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Abstract 

This paper considers gradual set-oriented 
functions and their application to fuzzy 
sets. An example, taken in the context of 
flexible querying of databases, is 
provided by the condition “the average 
salary of \RXQJ employees is DURXQG�
�����”. The evaluation of this condition 
leads to apply the gradual set-oriented 
property “the average salary is DURXQG�
�����” to the fuzzy set made of \RXQJ 
employees. The contribution of this paper 
is to propose a general technique to 
achieve such computations which is a 
generalization of Sugeno fuzzy integral. 
The result is given in the form of a degree 
which has a clear meaning. Two 
examples of use of this technique in the 
area of regular relational databases serve 
to illustrate this proposal. 

Keywords: relational database, flexible querying, 
linguistic summary, gradual set-oriented function. 

1     Introduction 

This paper deals with the problem of determining 
the value of a gradual set-oriented function when 
its arguments are fuzzy sets. Such a computation 
may appear into many contexts such as flexible 
querying of relational databases. In this context, 
atomic conditions define preferences instead of 
strict requirements and the set of answers returned 
to the user is discriminated. Atomic conditions are 
defined by fuzzy sets and are then called "vague" 
or "fuzzy" predicates. Such vague conditions can 
be aggregated using various operators (e.g., 
generalized conjunctions and disjunctions) and an 
extension of the SQL query language (called 
SQLf) has been proposed [1].  
 

In SQLf, as well as in SQL, it is possible to 
consider aggregates (such as the cardinality, the 
maximum or the average) which are functions 
applying to a set of items. Aggregates can be 
integrated into flexible queries as: "retrieve the 
firms where the average salary is DURXQG������". 
Its expression in SQLf is:  
 

VHOHFW #firm IURP EMP JURXS�E\ #firm  
KDYLQJ avg(salary) = DURXQG������,  

 
assuming that relation EMP(#emp, #firm, salary, 
age) describes employees working in different 
firms. The fuzzy condition� “the average salary is 
DURXQG� �����”� defines a gradual set-oriented 
function (which applies to sets of employees) and 
the satisfaction of each firm is given by the value 
of that function on the set of its employees. The 
more the firm satisfies this fuzzy condition, the 
higher its degree in the answer to the query.  
 
In the previous example, we are in a simple 
situation where the gradual function can be 
computed since it applies to a crisp set. However, 
when the items to aggregate are issued from a 
fuzzy condition, the interpretation is no longer 
trivial, as in the query aiming at the retrieval of 
firms where "the average of KLJK salaries is DURXQG�
�����" which could be expressed in SQLf as: 
 

VHOHFW #firm IURP EMP ZKHUH salary = KLJK  
JURXS�E\ #firm  
KDYLQJ DYJ(salary) = DURXQG������.  

 

Here, for a given firm, the gradual set-oriented 
function (which computes the extent to which the 
DYHUDJH salary is DURXQG� �����) applies to the 
fuzzy set of employees having a KLJK salary.  
 
The objective of this paper is to propose a 
technique to determine the value of a gradual set-
oriented function when its arguments are fuzzy 
sets. No particular assumption is made about both 
the function and the fuzzy sets, and the function 
may have several arguments (each of them being a 
set). The result of the function is given in the form 
of a degree.  
 
In the following, the gradual set-oriented function 
is denoted by F and A its argument (a fuzzy set of 
universe X). In case of a function F having several 
arguments, its fuzzy arguments are denoted by A1, 
A2, …, An. With these notations, the condition 
appearing in the previous example is rewritten 
F(A) where A is the fuzzy set of employees having 
a KLJK salary whereas F is such that F(E) delivers 
the extent to which "the DYHUDJH salary of a crisp 
set E of employees is DURXQG������"� 
 
The rest of the paper is structured as follows. 
Section 2 proposes an approach to determine the 
value of F(A1, A2, …, An). It is shown that his 
approach is a generalization of Sugeno fuzzy 



integral. Two examples of use of this proposition, 
respectively to define flexible queries in the 
context of regular relational database and to 
evaluate linguistic summaries, are introduced in 
section 3. 

2� The proposed approach 

The approach advocated to compute F(A1, A2, … , 
An) is introduced in subsection 2.1. In subsection 
2.2, it is shown that this proposition is a 
generalization of Sugeno fuzzy integral.  
 
�������$�GHILQLWLRQ�IRU�F($ � ��$ � ��«��$ � ��
 
According to our proposition, each fuzzy set Ai is 
viewed as a collection of its α-cuts which 
represent different interpretations (at different 
levels) of Ai. For a given level α, the value of 
F(A1

α, A2
α, … , An

α) can be computed which is an 
interpretation (associated with level α) of the 
result F(A1, A2, … , An).  
 
The question now is about the integration of the 
results associated with these various 
interpretations. Intuitively, it seems reasonable to 
think that :WKH� PRUH� RIWHQ�F($ �

α�� $
�

α��«�� $ �

α) is 
high when α varies, the higher F($ � �� $ � ��«��$ �

)� 
This interpretation is the meaning adopted for 
F(A1, A2, … , An). 
 
A way is to look for the highest degree of 
satisfaction β such that, for each level α, F(A1

α, 
A2

α, … , An
α) is at least equal to β. In other words: 

 
F(A1, A2, … , An) =  
      max β in [0,1] min(β, each(β)),                          (1) 
 
where each(β) means "for each interpretation 
α, F(A1

α, A2
α, … , An

α) ≥ β". 
 
Obviously, this definition depends on that of 
each(β). The simplest case is when each(β) is 
Boolean and equals 1 as soon as each 
interpretation reaches the threshold β: 
 
each(β) = 1 if ∀α where F(A1

α, A2
α, … , An

α) is  
      defined : F(A1

α, A2
α, … , An

α) ≥ β 
                0 otherwise. 
 
It is easy to show that this expression defines the 
truth value of F(A1, A2, … , An) as the minimum 
among all values F(A1

α, A2
α, … , An

α) and 
expression (1) becomes: 
 
F(A1, A2, … , An) =  
 minα | F(A1α, A2α, … , Anα) is defined F(A1

α ,… , An
α). 

 

This Boolean interpretation for each(β) may be too 
strict and a definition delivering a degree could be 
more convenient. We propose to sum the lengths 
of the intervals (of levels) where the threshold β is 
reached : 
 
each(β) =  

∑
 ≥

∈∀
−

 )A..., ,A,(A and defined is )A..., ,A,(A 
],,] such that  ],]
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The higher each(β), the more numerous the levels 
α for which F(A1

α, A2
α, … , An

α) ≥ β. In particular, 
each(β) equals 1 means that for each level α, 
F(A1

α, A2
α, … , An

α) is larger than (or equal to) β.  
           
This second definition for each(β) (i.e., expression 
(2)) is used in the rest of the paper. 
 
In addition, from a computational point of view, 
the definition of F(A1, A2, … , An) (expression (1)) 
needs to handle an infinity of values β. However, it 
is possible to restrict computations to β values 
belonging to the set of “ effective”  F(A1

α, A2
α, … , 

An
α) values : 

 

F(A1, A2, … , An) =  
             max β ∈ D  min(β, each(β)),                      (3) 
 

where D = {β | ∃α with β = F(A1
α, A2

α, … , An
α)}. 

 
3URRI��We consider expression (1) and we show 
that a value λ out of D can be omitted in the 
computations. When λ is out of D, two cases can 
be considered: 
 

Case 1. When λ is larger than the maximum value 
of D, we get each(λ) = 0 and consequently 
min(λ, each(λ)) = 0. Since the maximum value is 
retained in formula (1), value λ can be discarded 
since its contribution is 0.    
 

Case 2. When λ is not larger than the maximum 
value of D, there are values of F(A1

α, A2
α, … , An

α) 
such that λ ≤ F(A1

α, A2
α, … , An

α). We denote by 
m (associated with level α’) the smallest one. We 
have: each(λ) = each(m) and λ ≤ m, and we get: 
min(λ, each(λ)) ≤ min(m, each(m)). 
 

Since the maximum value is retained to define 
F(A1, A2, … , An), such a value λ can be omitted in 
computations of expression (1)♦ 
 

2.2    Position with respect to Sugeno fuzzy 
integral  
 
This section points out that the previous approach 
is a generalization of Sugeno fuzzy integral. A 
particular property of F(A) is also provided when F 



is increasing with respect to set inclusion (this 
property will be used in subsection 3.2). 
 

When F has one argument and is increasing with 
respect to set inclusion, expression (3) can be 
defined by: 
 

F(A) = maxα | F(Aα) is defined min(F(Aα), α)      (4). 
 

When F is a fuzzy measure, expression (4) is that 
of a Sugeno fuzzy integral [2]. 
 
Proof. Since expression (3) deals with values in 
{β|∃α with β = F(Aα)}, F(A) can be rewritten : 
 

F(A) =  
   maxα | F(Aα) is defined min(F(Aα), each(F(Aα))).  
 

In addition, since F is increasing with respect to set 
inclusion: α ≤ α’ ⇒ F(Aα) ≥ F(Aα’). As a 
consequence, each(F(Aα)) is the maximum level λ 
where F(Aλ) = F(Aα). Consequently: 
 

F(A) = maxα where F(Aα) is defined     min(F(Aα), χ(α)), 
 

where χ(α) = max{ λ | F(Aλ) = F(Aα)}. Since each 
χ(α) value is a level of α-cut and since F(A) is the 
maximum of min(F(Aα), χ(α)), we get: 
 

F(A) = maxα where F(Aα) is defined     min(F(Aα), α).♦ 
 
Property 1. When F satisfies the following 
constraints : i) it has a single argument, ii) it is 
defined for each α-cut of its argument, iii) it is 
increasing with respect to set inclusion, then we 
get: 
 

 F(A) is the maximum value δ such that δ ≤ F(Aδ).  
 

Proof. Let us denote by ϖ the α value which 
maximizes expression (4). We have F(A) = 
min(F(Aω), ϖ). Since F(A) ≤ ϖ and F(A) ≤ F(Aω), 
we get F(A) ≤ F(Aω) ≤ F(AF(A)) (F being 
increasing). F(A) is the highest value having this 
property because if there exists λ such that F(A) < 
λ and λ ≤ F(Aλ) then min(λ, F(Aλ)) > F(A) which 
is impossible (the result of (4) being F(A)). ♦ 
 
3� Examples  
 

This section illustrates the use of this proposal 
with two examples where it applies. The first 
example (subsection 3.1) is related to flexible 
querying of relational databases, the second one 
(subsection 3.2) is related to the evaluation of 
linguistic summaries. 
 
3.1    Example in flexible querying 
 
In this subsection we consider the use of 
aggregates in flexible querying of relational 

databases. We show that the approach introduced 
before allows to evaluate two types of condition 
involving aggregates.  
 
Conditions of the first type are denoted by “ agg 
(A) is C”  where agg is an aggregate (maximum, 
average, … ), A is a fuzzy set where the aggregate 
applies and C a fuzzy predicate. Such a condition 
expresses that the aggregate agg computed on 
fuzzy set A satisfies fuzzy condition C. An 
example is given by “ the average salary of high 
salaries is around $5000”  where agg is the 
average, A the fuzzy set of high salaries and C the 
fuzzy condition to be around $5000. 
 
Conditions of the second type involve a fuzzy 
comparator θ and are denoted by “ agg1(A) θ 
agg2(B)” .  Such a condition expresses that the 
aggregate agg1 computed on fuzzy set A is in 
relation θ with the aggregate agg2 computed on 
fuzzy set B. An example is given by “ the average 
of high salaries is almost equal to the maximum 
salary of medium salaries”  where agg1 is the 
average, A the fuzzy set of high salaries, θ the 
fuzzy comparator almost equal to, agg2 the 
maximum and B the fuzzy set of medium salaries. 
 
The evaluation of a condition “ agg(A) is C”  leads 
to determine the value of the gradual set-oriented 
function “ the aggregate is C”  on fuzzy set A. If F 
is the function defined by: 
 

F : 2X → [0,1] 
     E → F(E) = µC(agg(E)), 

(where X is the universe of A) the evaluation of 
” agg(A) is C”  leads to compute F(A). According to 
our approach, the more α-cuts of A highly satisfy 
the constraint “ the aggregate is C” , the more 
satisfied “ agg(A) is C” . 

Example 1. The statement "avg(A) is high" is 
considered with the following fuzzy set A: 

{0.1/1 + 0.1/2 + 0.1/3 + 0.1/4 + 0.1/5 + 0.1/15 + 
0.2/200 + 0.5/700 + 0.8/500 + 1/600}. 

Function F is defined by F(E) = µhigh(avg(E)) and 
the interpretation of “ avg(A) is high”  needs to 
compute F on A. If we assume that: µhigh(203) = 
0.2, µhigh(500) = 0.8, µhigh(550) = 0.9 and µhigh(600) 
= 1, we get : 
 

α 0.1 0.2 0.5 0.8 1 
avg(Aα) 203 500 600 550 600 
F(Aα) 0.2 0.8 1 0.9 1 

7DEOH��. The truth values of F(Aα) 
 
From the previous table we get : 



D = {0.2, 0.8, 0.9, 1}.  

Figure 1 gives: each(0.2) = 1, each(0.8) = 0.9, 
each(0.9) = 0.8 and each(1) = 0.5. 
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              )LJXUH��. Values for F(Aα) 
 

According to (3), the result is: 
 

F(A) =  max min(0.2, 1) min(0.8, 0.9)  
                         min(0.9, 0.8) min(1, 0.5) = 0.8. 
 

The statement "avg(A) is high" is rather true (at 
degree 0.8) since every interpretation of fuzzy set 
A (except one) strongly satisfies condition "the 
average is high" (cf. figure 1).♦ 
 
The evaluation of conditions of type “ agg1(A) θ 
agg2(B)”  leads to define a gradual set-oriented 
function expressing that, for two crisp sets E1 and 
E2, agg1(E1) is in relation θ with agg2(E2). If X1 is 
the universe where A is defined, and X2 that of B 
we get : 
 

 F : 2X1
 × 2X2 → [0,1] 

       (E1, E2)  → F(E1, E2) = µθ(agg1(E1), agg2(E2)). 
 

The evaluation of  “ agg1(A) θ agg2(B)”  is given by 
the computation of F(A, B). According to our 
approach, the more the α-cuts of A and B highly 
satisfy the constraint “ agg1(Aα) θ agg2(Bα)” , the 
more satisfied “ agg1(A) θ agg2(B)” . 

Example 2. We consider the condition “ the 
average salary of young employees is almost equal 
to the maximum of medium salaries”  where the set 
of salaries tied to young employees is : 

A = {1/3000 + 0.8/10 000 + 0.6/2000  
                      + 0.3/11 000 + 0.1/4000}, 

while the set of medium salaries is : 

B = {0.2/6000 + 0.5/4800 + 0.8/5800 + 0.1/1000}. 

Let us consider the fuzzy comparison operator 
almost equal to defined as: 

µ≈(x, y) = 1 – min(|x – y |/1000, 1), 

where x and y belong to the set S of salaries.  The 
evaluation of “ avg(A) ≈ max(B)”  leads to compute 
F(A, B) where function F is defined for crisp sets :  
 

  F : 2S × 2S → [0,1] 
     (E1, E2) → F(E1, E2) = µ≈(avg(E1), max(E2)). 

The values of F for the effective α-cuts are given 
by table 2 and figure 2: 
 

α avg(Aα) max(Bα) F(Aα, Bα) 
0.1 6000 6000 1 
0.2 6500 6000 0.5 
0.3 6500 5800 0.3 
0.5 5000 5800 0.2 
0.6 5000 5800 0.2 
0.8 6500 5800 0.3 
1 3000 not defined 

7DEOH��. Values for F(Aα) 
 
�
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              )LJXUH��. Values for F(Aα, Bα). 
 
The set D concerned by definition (3) is then D = 
{0.2, 0.3, 0.5, 1}, and, from figure 2, we compute 
each(0.2) = 0.8, each(0.3) = 0.5, each(0.5) = 0.2, 
each(1) = 0.1. From definition (3) we compute : 
 
F(A, B) = max min(1, 0.1), min(0.5, 0.2), min(0.3, 
0.5), min(0.2, 0.8) = 0.3. 
 
This result is rather low because for most of α-
cuts, the satisfaction of “ avg(Aα) ≈ max(Bα)”  is 
rather low (cf. figure 2).♦ 
 
3.2   Evaluation of linguistic summaries 
 
Database knowledge discovery aims at discovering 
hidden knowledge or patterns from databases. 
Many items can be the subject of discovery, 
among them are linguistic summaries of data 
which are statements of the natural language.  
 
Linguistic summaries involving linguistic 
quantifiers [3, 4, 5] are expressing a constraint on 
the cardinality (or proportion) of items satisfying a 
fuzzy condition. It is the case of the linguistic 
summary “ most of employees are young”  where 
the proportion of young employees (with respect 
of the entire database) is in accordance with the 
linguistic quantifier most of. Such a summary is 
associated with a degree expressing its validity. 
Linguistic summaries can also express a property 
between two concepts [6, 7] as in “ young 
employees are well-paid” . This summary can have 
a Boolean interpretation [6] stating that: for each 
employee of the database, “ the younger he is, the 
more well-paid he is” . 
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F(Aα) 
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In this section, we consider a relational database 
and a new type of linguistic summaries. More 
precisely, we consider linguistic summaries of the 
form “ A1 is C1 and A2 is C2 and …  and An is Cn”  
where Ais are attributes of a same relation and Cis 
are different linguistic variables. Each linguistic 
variable Ci is defined by a fuzzy set over the 
domain of attribute Ai. An example is provided by 
the linguistic summary “ the employees are young 
and well-paid”  which is rewritten “ age is young 
and salary is well-paid”  where age and salary are 
two attributes of the relation R describing 
employees. 
 
The validity of such a summary over the entire 
database depends on two parameters : the quantity 
of tuples which satisfy the conjunction and their 
levels of satisfaction. The higher are the quantity 
and the level of satisfaction, the more valid the 
summary is. 
 
The difficulty of this interpretation is due to the 
fact that, in general, the higher the quantity, the 
smaller the satisfaction. This means that the 
interpretation needs to determine a compromise 
between these two aspects, quantity and individual 
satisfaction. In this section, we show that such a 
compromise can be achieved by the approach 
presented in the previous section. The result can be 
easily interpreted by the user depending on the 
definition he gave for the Cis.  
 
Let F be the gradual set-oriented function defined 
by : 

           2dom(A1) × …  × dom(An)  → [0,1] 
                                     E  → F(E), 

where F(E) expresses the percentage of elements 
from R[A1, ..., An] which can be found in E : 

F(E)  = |E ∩ R[A1, ..., An]| / |R[A1, ..., An]|. 

The value of F(C1 × C2 × …  × Cn) estimates the 
percentage of elements from R which satisfies “ A1 
is C1 and A2 is C2 and …  and An is Cn” . F being 
increasing and defined for each α-cut, from 
expression (4) we get : 
 
       F(CP) = maxα∈[0,1] min(F(CPα), α),          
 

where CP is the Cartesian product C1 × C2 × …  × 
Cn. As the α-cut of a Cartesian product is the 
Cartesian product of α-cuts we get : 
 

F(C1 × C2 × …  × Cn)  
= maxα∈[0,1] min(F(C1

α × C2
α × …  × Cn

 α), α)      (5) 
 

According to property 1, F(C1 × C2 × …  × Cn) is 
the maximum value p such that p ≤ F(C1

p × C2
p × 

…  × Cn
 p). In other words, it delivers the highest 

p such that at least p% of the tuples satisfies “ A1 is 
C1 and A2 is C2 and …  and An is Cn”  at a degree 
which is of at least p.  
 
P = 1 means that all the database fully satisfies “ A1 
is C1 and A2 is C2 and …  and An is Cn” . P = 0.8 
means that at least 80% of the database satisfies 
“ A1 is C1 and A2 is C2 and …  and An is Cn”  at a 
degree at least equal to 0.8. When p is small (0.1 
for example), this summary is not interesting, 
since p is a maximum. 
 
From a computational point of view, two points 
are worthy of discussion : 
 
i) definition (5) needs to handle an infinity of 
values α and next proof shows that it can be 
limited to values belonging to the following set : 
 
D’ =  
{min(µC1(t.A1), µC2(t.A2), … , µCn(t.An)), t ∈R}, 
 
ii) the computation of F(C1

α × C2
α × …  × Cn

 α) 
involves the intersection between a Cartesian 
product of α-cuts and a projection : 
 
(C1

α × C2
α × …  × Cn

 α) ∩ R[A1, ..., An]. 
 
This computation may appear to be difficult in 
practice since set (C1

α × C2
α × …  × Cn

 α) is (most 
of the times) infinite. However, no particular 
difficulties are expected here since C1

α × C2
α × …  

× Cn
 α is a crisp set which means that this 

intersection can be obtained by a projection and a 
Boolean selection over relation R. 
 
Proof. �We consider expression (5) and we show 
that a value λ out of D’ can be omitted in the 
computations. When λ is out of D’, two cases can 
be considered : 
 

Case 1. When λ is larger than the maximum value 
of D’, no values from R[A1, ..., An] belong to 
F(C1

λ × C2
λ × …  × Cn

 λ). As a consequence we get 
F(C1

λ × C2
λ × …  × Cn

 λ) = 0. Since the maximum 
value is retained in formula (5), value λ can be 
discarded since its contribution is 0.    
 

Case 2. When λ is not larger than the maximum 
value of D’ , there are values p of D’  such that λ ≤ 
p. We denote by m the smallest one. We have: 

F(C1
λ × C2

λ × …  × Cn
 λ) = F(C1

m × C2
m × …  × 

Cn
m) and λ ≤ m,  

and we get:  
min(F(C1

λ × C2
λ × …  × Cn

 λ),λ)  
        ≤ min(F(C1

m × C2
m × …  × Cn

m),m). 



Since the maximum value is retained to define 
F(C1 × C2 × …  × Cn), such a value λ can be 
omitted in computations.♦ 
 
4     Conclusion 
 
This paper has proposed an approach to determine 
the value of a gradual set-oriented function when 
its arguments are fuzzy sets. If the function is 
denoted by F while its fuzzy arguments are denoted 
by A1, A2, … , An

, the value of F(A1, A2, … , An) is a 
degree such that the more often F(A1

α, A2
α, … , 

An
α) is high when α varies, the higher F(A1, A2, … , 

An). In the particular case where F is a fuzzy 
measure, the proposed computation is a Sugeno 
fuzzy integral. Two examples of use of this 
proposition have been provided.  

The first one concerns the evaluation of conditions 
involving aggregate operators in flexible querying 
of regular databases. When considering a condition 
of type “ agg(A) is C”  (avg(high salaries) is around 
2000$) the given interpretation considers that the 
more α-cuts of A highly satisfy the constraint “ the 
aggregate is C” , the more satisfied “ agg(A) is C” . 

In addition, it can be demonstrated [8] that the truth 
value obtained for "agg(A) is C" is the negation of 
that of "agg(A) is not C" only when A is a 
normalized fuzzy set or the aggregrate is defined 
for the empty set. Otherwise, this property does not 
hold and the truth value of these two statements is 
bounded by the maximum membership in A, which 
indeed reflects the inapplicability of the aggregate 
on the empty α-cuts. Conditions of type “ agg1(A) θ 
agg2(B)”  (“ avg(A) ≈ max(B)” ) where θ is a fuzzy 
comparator, can also be interpreted and, here again, 
the more α-cuts of A and B highly satisfy 
“ agg1(Aα) θ agg2(Bα)” , the more satisfied “ agg1(A) 
θ agg2(B)” .  

The second use of our approach is related to the 
evaluation of linguistic summaries of the type “ A1 
is C1 and A2 is C2 and …  and An is Cn”  where Ais 
are attributes of a same relation and Cis are 
different linguistic variables. The validity of such 
a summary over the entire database depends on 
two parameters : the quantity of tuples which 
satisfies the conjunct and their individual levels of 
satisfaction. As, in general, the higher the quantity, 
the smaller satisfaction, our proposition 
determines a compromise between these two 
aspects. It delivers the highest p such that at least 
p% of the tuples satisfies “ A1 is C1 and A2 is C2 
and …  and An is Cn”  at a degree which is of at 
least p.  

In the near future, we aim at designing new 
patterns for linguistic summaries where the 
conjunctions are replaced by disjunctions or are 

mixed with other logical operators. In addition, the 
design of efficient algorithms to achieve the 
proposed computations is also a matter of future 
research.  
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