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$EVWUDFW
This paper is devoted to the evaluation of
quantified statements in flexible querying
of relational databases. Its contribution is a
new approach based on the arithmetic on

fuzzy numbers ( f, f, f) expressing
well-known but gradual numbers. The
advantage of this proposition is that no
particular assumption is made on the
monotonicity of  the linguistic quantifier. In
addition, this approach is a generalization
of the OWA-based evaluation.

.H\ZRUGV� flexible querying, linguistic
quantifiers, gradual numbers, OWA.

�� ,QWURGXFWLRQ
Flexible querying of relational databases aims at
expressing preferences into queries instead of
boolean requirements as it is the case for regular (or
crisp) querying. As a consequence, a flexible query
returns a set of discriminated answers to the user
(from the best answers to the less preferred). Many
approaches to define flexible queries have been
proposed and it has been shown that the fuzzy set
based approach is the more general [1] and the more
powerful. An extension of the SQL language
(namely SQLf) has been proposed [2] to defined
more sophisticated flexible queries calling on fuzzy
sets.

In this context, predicates are defined by fuzzy sets
and are called fuzzy predicates. They can be
combined using various operators such as
generalized conjunctions/disjunctions (expressed by
norms/t-norms) or using more sophisticated
operators such as averages. In addition, linguistic
quantifiers [3] (which are quantifiers defined by
linguistic expressions like “PRVW�RI” or “DURXQG��”)
allow to define a particular type of conditions called
quantified statements. Such a condition is made of 3
elements :  a linguistic quantifier (denoted by 4), a
crisp set (denoted by X) and a fuzzy predicate

(denoted by $) and means “4 elements belonging to
X are $”. A quantified statement is denoted “4 X
are $” for short, as the quantified statement “PRVW�RI
employees are ZHOO�SDLG” (where 4 is “PRVW�RI”, X a
set of employees and $ the condition “WR� EH� ZHOO�
SDLG”). A second type of quantified statements can
be distinguished where the quantifier applies to a
fuzzy set as in “PRVW�RI \RXQJ employees are ZHOO�
SDLG”. This second type of statement is written “4 %
X are $”. Quantified statements can be used in
flexible queries like in the query : “retrieve the firms
where PRVW�RI employees are ZHOO�SDLG”. Each firm
is associated to a degree in [0,1] expressing its
satisfaction with respect to the quantified statement
“PRVW�RI employees are ZHOO�SDLG”. The higher this
degree, the better answer is the firm.

To evaluate a quantified statement is to determine
the extent to which it is true. Many approaches have
been proposed to evaluate statements of type “4 X
are $”. The most popular approaches (since
meaningful) are the OWA operator [4] and the
Sugeno fuzzy integral [5]. Both deliver a degree of
truth and are limited to statements involving
increasing quantifiers (as “PRVW�RI”, “DW�OHDVW��”).

This paper mainly considers the evaluation of
quantified statements of type “4 X are $” in flexible
querying where there is no particular reason to be
limited to increasing quantifiers.  As a consequence,
its objective is to propose a framework to evaluate
quantified statements of type “4 X are $” where 4
can be of any type (with respect to monotonicity).
This extension is based on the handling of fuzzy

integers ( f, f) [6][7] and fuzzy rational numbers

( f) as defined in [8]. These specific numbers
express well-known but gradual numbers and differ
from usual fuzzy numbers which define imprecise
(ill-known) numbers. The proposed approach is also
a generalization of the OWA-based interpretation of
quantified statements.

Section 2 introduces the definition of linguistic
quantifiers and the use of the OWA operator to
evaluate quantified statements involving increasing



quantifiers. A representation of linguistic quantifiers
in terms of a tolerance with respect to a difference of
fuzzy integers is given in section 3. Section 4 calls
on this representation to propose an evaluation for
“4 X are $”  statements where 4 is of any type. It is
shown that when 4 is increasing this evaluation
reverts to the use of the OWA operator.

�� /LQJXLVWLF�TXDQWLILHUV�DQG�WKH�2:$
RSHUDWRU

Two kinds of linguistic quantifiers can be
distinguished: absolute quantifiers (which refer to an
absolute number such as DERXW��, DW�OHDVW��, ...) and
relative quantifiers (which refer to a proportion such
as DERXW�WKH�KDOI, DW�OHDVW�D�TXDUWHU, ...).
A linguistic quantifier can also be increasing (resp.
decreasing), which means that an increase in the
satisfaction to condition $ cannot decrease (resp.
increase) the truth value of the statement "4 X are
$". $W� OHDVW��, DOPRVW�DOO  (resp. DW�PRVW��, DW�PRVW
WKH� KDOI) are examples of increasing (resp.
decreasing) quantifiers. A quantifier is monotonic
when it is either increasing, or decreasing. It is also
possible to point out unimodal quantifiers which
refer to a quantity such as DERXW�WKH�KDOI, DERXW��.

The representation of an absolute quantifier is a
fuzzy subset of the real line. A relative quantifier is
defined by a fuzzy subset of the unit interval [0,1].
In both cases, the membership degree µQ(j)
represents the truth value of the statement "4 X are
$" when j elements in X completely satisfy $,
whereas $ is fully unsatisfied by the others (j being a
number or a proportion). The representation of an
increasing linguistic quantifier satisfies:

Def. (1) : i) µQ(0) = 0, ii) ∃ k such as µQ(k) = 1,
     iii) ∀ a, b if a > b then µQ(a) ��µQ(b)

A decreasing linguistic quantifier is defined by:

Def. (2) : i) µQ(0) = 1, ii) ∃ k such as µQ(k) = 0,
     iii) ∀ a, b if a > b then µQ(a) ��µQ(b)

A unimodal quantifier is a fuzzy subset 4 such that:

Def. (3) : i) µQ(0) = 0, ii) ∃! k such as µQ(k) = 1,
               iii) ∀ a < b < k then µQ(a) ��µQ(b)
                    and ∀ a > b ��N�WKHQ�µQ(a) ��µQ(b).

([DPSOH� ��� Figures 1 and 2 are respectively
representing an absolute increasing quantifier (DW

OHDVW� �, k = 3) and a relative unimodal quantifier
(DERXW�KDOI, k = 0.5) •

The interpretation of "4 X are $" (4 being
increasing), by an ordered weighted average (OWA
operator) is given by:

OWA =� ))x(*w(
n

1i
iAi∑

=
,  

where the degrees of membership in $ are
decreasingly ranked µA(x1) ≥ µA(x2) ≥ … ≥ µA(xn)
and wi = µQ(i) - µQ(i-1) in case of an absolute
quantifier and µQ(i/n) - µQ((i-1)/n) in case of a
relative one (n being the cardinality of set X). Each
weight wi represents the increase in satisfaction
when comparing a situation where (i-1) elements are
entirely $ with a situation where i elements are
entirely $.

Figure 1: The quantifier DW�OHDVW��

Figure 2: The quantifier DERXW�KDOI

([DPSOH��� Let 4 be the increasing absolute DW�OHDVW
� defined in figure 1 and X = {x1, x2, x3, x4} with
µA(x1) = µA(x2) = 1, µA(x3) = 0.8, µA(x4) = 0.6.

From figure 1, we get the weights:

w1 = µQ(1) - µQ(0) = 0, w2 = µQ(2) - µQ(1) = 0.5, w3

= µQ(3) - µQ(2) = 0.5, w4 = µQ(4) - µQ(3) = 0.

The interpretation of the statement "DOPRVW�DOO�X are
$" by an OWA operator is:

(w1 * µA(x1)) + (w2 * µA(x2)) + (w3 * µA(x3)) +

1
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(w4  * µA(x4)) = (0.5 * 1) + (0.5 * 0.8) = 0.9.

This result is close to 1, which means that "DW�OHDVW��
X are $" is rather true. This result fits the intuition
since the three highest degrees of satisfaction with
respect to A are 1, 1 and 0.8•

Another expression for the OWA operator is:

OWA =� ))(x)(x(i)*( 1iAiA

n
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−∑ ,         (1)

where the degrees of membership in $ are
decreasingly ranked µA(x1) ≥ µA(x2) ≥ … ≥ µA(xn)
and µA(xn+1) = 0. This equivalent expression is
considered in subsection 3.2.3.

�� $Q�LQWHUSUHWDWLRQ�EDVHG�RQ�IX]]\�LQWHJHUV
A linguistic quantifier is defined by a fuzzy set
expressing a constraint on crisp cardinalities (for
absolute quantifiers) or crisp proportions (for
relative quantifiers). As an example, the quantifier
described in figure 1 expresses that a cardinality of 4
fully satisfies the constraint “ DW� OHDVW� �”  while a
cardinality of 2 satisfies the same constraint at
degree 0.5. When evaluating a “4 X are $”
statement, the key point is  to determine the extent to
which a fuzzy quantity (either the fuzzy cardinality
of the fuzzy set made of elements from X which are
$, or the fuzzy proportion of $ elements in X)
satisfies the constraint described by 4. The approach
suggested here uses another representation of
linguistic quantifiers (subsection 3.1) and proposes
to achieve computations (subsection 3.2) thanks to

arithmetic operations on fuzzy integers ( f), fuzzy

relative integers ( f) [6] and fuzzy rational numbers

( f) [8]. This new interpretation of quantified
statements deals with any kinds of linguistic
quantifiers (unimodal, increasing or decreasing).

����$�QHZ�UHSUHVHQWDWLRQ�IRU�OLQJXLVWLF�TXDQWLILHUV
The fuzzy set which describes a linguistic quantifier
can be decomposed into two parts, a value (denoted
k in definitions Def. (1), Def. (2) and Def. (3))
which can be either an integer or a proportion and a
tolerance with respect to this precise value. To
obtain the tolerance it is necessary to shift the curve
describing the quantifier. The tolerance function T is
obtained using the translation T(x-k) = µQ(x). As a
consequence, in the following, we denote a
quantifier by a couple (k, T) made of the two items.
As an example, the quantifier given by figure 1 is

given by the following couple (3, T) where the
tolerance is given by figure 3.

Figure 3: The tolerance function associated to the
quantifier DW�OHDVW��

In this last example, the tolerance function is defined
on the set of integers (since the quantifier is
absolute) but in case of a relative quantifier, the
tolerance function is defined on [0, 1] (on
proportions).

�����,QWHUSUHWLQJ�TXDQWLILHG�VWDWHPHQWV�XVLQJ
IX]]\�DULWKPHWLF
In this subsection, we consider the evaluation of
quantified statements of type “4 X are $”  where 4
is given by the new representation introduced in the
previous subsection. No particular assumption is
made on the monotonicity of the quantifier. We
consider in 3.2.1 the case of an absolute quantifier
while the case of a relative integer is introduced in
3.2.2. It is then shown in 3.2.3 that when 4 is
increasing, the process introduced here reverts to the
interpretation given by the OWA operator.

3.2.1 Absolute quantifier

First, the case where $ is a crisp predicate is
presented. It is then extended to the general case
where $ is fuzzy.

When $ is a crisp predicate, the cardinality of the
fuzzy set made of elements from X which are $ is a
precise number (denoted c in the following). The
quantified statement “4 X are $”  is then evaluated
by µQ(c). When referring to the new representation
of quantifiers, it immediately gives T(c-k) (since ∀x,
T(x-k) = µQ(x)). Same computations are retained in
case of a fuzzy predicate for $. First, (c-k) is
computed (c being an FGCount) and T(c-k) is
represented by a fuzzy set. This fuzzy set is
defuzzified to provide a scalar value for T(c-k).

When $ is a fuzzy set, the cardinality is described by
a fuzzy number given by:

1
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T(j)



∀ e ∈ , µc(e) = sup {α / |Aα| ≥ e}.

This definition is that of the FGCount($) proposed
by Zadeh [3]. The degree µc(e) expresses the extent
to which there is at least e elements in fuzzy set $.
Fuzzy number c is a normalized convex conjunctive
fuzzy set which is non decreasing.

([DPSOH��� If we consider the fuzzy set $ given in
example 2, we get:

Figure 4: A fuzzy integer
•

The computation of T(c-k) is made thanks to the
operations defined for fuzzy integers developed in
[6]. The key point is that each fuzzy natural integer

( f) is a FGCount   (similarly to the crisp integers
defined as crisp cardinalities) while fuzzy relative

integers ( f)  have been defined as couples of fuzzy
natural integers.

As we first need to compute (c-k), where c belongs

to f, it is necessary to represent the crisp integer k
as a fuzzy integer (to compute the difference
between two fuzzy numbers). More precisely, k is
defined as the FGCount of any crisp set having
exactly k elements:

∀ e ∈ [0,k], µk(e) = 1,
∀ e > k, µk(e) = 0.

The difference (c-k) belongs to f and is represented
by the couple (c, k) (see [] for details). A canonical
representation of (c-k) can be obtained by
considering each level α:

∀ α ∈ [0, 1], ∆(α) = c(α) – k(α),

where c(α) (resp. k(α)) is the cardinality of the α
level cut of any fuzzy sets having c (resp. k) as fuzzy
cardinality. It gives:

∀ α ∈ [0, 1], ∆(α) = |Aα| - k.

Moreover, applying a predicate T on a fuzzy relative
integer such as ∆ leads to apply T on the
cardinalities of the different α-cuts of the underlying
fuzzy sets [9]. Consequently the evaluation of T(∆)
is performed α-cut by α-cut and the satisfaction of
(c-k) to tolerance T is given by:

∀ α ∈ [0, 1], µT(c-k)(α) = T(∆(α)),
           = T(|Aα|-k),

                                     = µQ(|Aα|).               (2)

The fuzzy set T(c-k) is a fuzzy truth value
expressing the satisfaction of each α-cut of $ with
respect to the linguistic quantifier .

([DPSOH��� If we consider the fuzzy set $ given in
example 2 and the statement “ DERXW� � X are $”
where the linguistic quantifier DERXW� � is given by
figure 5.

             0        1           2          3          4          5                       j

Figure 5: A representation for the quantifier
DERXW��

We get the following fuzzy truth value for “ DERXW��
X are $”  :

Figure 6: A fuzzy truth value

•

As α-cuts are different interpretations of fuzzy set $,
one may remark that the more α-cuts satisfy the
constraint defined by 4, the more fuzzy set $
satisfies the constraint defined by 4. It means the
following degree of satisfaction δ can be computed
for “4 X are $”  :

δ = ∫ µT(c-k)(α) dα                                              

1
µQ(j)

0.5

1

0                                   0.6         0.8        1       level α

µQ(|Aα|)

1
0.8
0.6

0      1      2      3       4      5      e

µc(e)



Value δ is the area delimited by function µT(c-k).
Since this function is a stepwise function, we get :

δ = (α1 – 0) * µT(c-k)(α1) + (α2 – α1) * µT(c-k)(α2) +...+
(1 –αn) * µT(c-k)(1),                                                  (3)

where the discontinuity points are (α1, µT(c-k)(α1)),
(α2, µT(c-k)(α2)), ..., (αn, µT(c-k)(αn)) with α1 < α2 < ...
< αn. When δ = 1, it means that any α-cut of fuzzy
set $ fully satisfies the constraint defined by the
quantifier. The higher δ, the more α-cuts highly
satisfy the constraint “4 elements are $” . In
addition, one may remark that the αi’s are nothing
but the different degrees of membership in $.

([DPSOH��� When referring to the previous example,
from figure 6 we compute:

δ = (0.6 – 0) * 0.5 + (0.8 – 0.6) * 1 + (1 – 0.8)* 0.5,
  = 0.6.

The result is coherent with the intuition since it
seems that the cardinality of fuzzy set $ is between 2
and 3 with µQ(2) = 0.5 and µQ(3) = 1•

However, one may point out that different
definitions can be envisaged for δ since it is the
result of a defuzzification (see [9]).

3.2.2 Relative quantifier

The interpretation of “4 X are $”  in case of a
relative quantifier can be adapted from that an
absolute quantifier by considering the cardinality
(denoted n hereafter) of crisp set X and a fuzzy
proportion instead of a fuzzy cardinality.

When $ is a crisp predicate, the quantified statement
“4 X are $”  is evaluated by µQ(c/n) where c is the
cardinality of the crisp set made of element from X
which are $. When referring to the new
representation of quantifiers, it immediately gives
T((c/n)-k) (since ∀x ∈ [0, 1], T(x-k) = µQ(x)).

When $ is a fuzzy set, (c/n)-k is a fuzzy rational

number (from f) and T((c/n)-k) is represented by a
fuzzy set defined by:

∀ α ∈ [0, 1], µT((c/n)-k)(α) = µQ(|Aα|/n).                   (4)

Here again, the fuzzy value T((c/n)-k) expresses the
satisfaction of each α-cut with respect to the
linguistic quantifier and one may remark that the
more α-cuts satisfy the constraint defined by 4, the
more fuzzy set $ satisfies the constraint defined by
4. Similarly to the case of an absolute quantifier, an
overall degree of satisfaction δ can be computed for
“4 X are $” :

δ = ∫ µT((c/n)-k)(α) dα

Value δ is the area delimited by function µT((c/n)-k).
By denoting αi’s the different degrees of
membership in $ with α1 < α2 < ... < αn., we get:

δ = (α1 – 0) * µT((c/n)-k)(α1) + (α2 – α1) * µT((c/n)-k)(α2)
+...+ (1 – αn) * µT((c/n)-k)(1)                                     (5)

Thus, the higher δ, the more α-cuts highly satisfy
the constraint “4 elements are $” . In addition, one
may remark that the αi’s are nothing but the
different degrees of membership in $.

([DPSOH� �� We consider the fuzzy set $ given in
example 2 and the statement “ DERXW� KDOI X are $”
where the linguistic quantifier DERXW�KDOI is given by
figure 2. From definition (3) we get the following
fuzzy truth value for “ about half X are $” :

Figure 7: A fuzzy truth value

We obtain:

δ = (1 – 0.8) * 1 = 0.2.

The result is coherent with the intuition since it
seems that the proportion of $ elements in X seems
to be a little bit less than 3/4 •

3.2.3 Relation with the OWA operator

This subsection shows that, when the quantifier is
increasing, the approach advocated here to interpret
“4 X are $”  statements leads to an OWA operator.

1
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We demonstrate that expression (3) (in case of an
increasing absolute quantifier) and expression (5) (in
case of an increasing relative quantifier) are OWA
operators.

In expression (3) and (5) the αi’ s are nothing but the
different degrees of membership in $. It means
expression (3) (resp. (5)) can be rewritten:

δ = (µA(xn)  – 0) * µT(c-k)(µA(xn)) + (µA(xn-1)  –
µA(xn)) * µT(c-k)( µA(x n-1)) +...+  (µA(x1)  – µA(x2)) *
µT(c-k)( µA(x1)) + (1 – µA(x1)) * µT(c-k)(1),

(resp. δ = (µA(xn)  – 0) * µT((c/n)-k)(µA(xn)) + (µA(xn-1)
– µA(xn)) * µT((c/n)-k)( µA(xn-1)) +...+(µA(x1)  – µA(x2))
* µT((c/n)-k)( µA(x1)) +  (1 – µA(x1)) * µT((c/n)-k) ( 1)),

where µA(x1) ≥ µA(x2) ≥ … ≥ µA(xn). As µT(c-k)(α) =
µQ(|Aα|)  (resp. µT((c/n)-k)(α) = µQ(|Aα|/n)), we can
write :

δ = (µA(xn) – 0) * µQ(n), + (µA(xn-1)  – µA(xn)) *
µQ(n-1) +...+ (µA(x1)  – µA(x2)) * µQ(1) + (1 –
µA(x1)) * µQ(|A1|),

(resp. δ = (µA(xn)  – 0) * µQ(1), + (µA(xn-1)  – µA(xn))
* µQ(n-1/n) +....+ (µA(x1)  – µA(x2)) * µQ(1/n) + (1 –
µA(x1)) * µQ(|A1|/n)).

However (1 – µA(x1)) * µQ(|A1|) (resp. (1 – µA(x1)) *
µQ(|A1|/n)) is 0:

• when A is normalized µA(x1) = 1,
• when $ is not normalized µQ(|A1|) =

µQ(|A1|/n) = µQ(0) = 0, 4 being increasing.

 and so:

δ = (µA(xn) – 0) * µQ(n), + (µA(xn-1)  – µA(xn)) *
µQ(n-1) +...+ (µA(x1)  – µA(x2)) * µQ(1),

(resp. δ = (µA(xn)  – 0) * µQ(n/n), + (µA(xn-1)  –
µA(xn)) * µQ(n-1/n) +....+ (µA(x1)  – µA(x2)) *
µQ(1/n).

which is nothing but the operator OWA (expression
(1)).

���&RQFOXVLRQ
This paper takes place at the crossword of flexible
querying of relational databases using fuzzy sets and
fuzzy arithmetic introduced in  [6][9][10]. It shows

that fuzzy arithmetic allows to evaluate quantified
statements  involving any kind of quantifiers (with
respect to monotonicity). The proposed approach is
a generalization of the OWA-based interpretation
(this one is limited to monotonic quantifiers). It
focuses on statements of type “4 X are $” , but fuzzy
arithmetic also provides a sound basis to evaluate
statements of type “4�% X are $” . As an example,
the statement “PRVW� RI \RXQJ employees are ZHOO�
SDLG”  could be evaluated by confronting the fuzzy
ratio “ cardinality of \RXQJ and ZHOO�SDLG employees
/ cardinality of \RXQJ employees”  with the fuzzy
number “ DURXQG��” .

In the near future, we aim at comparing a fuzzy
arithmetic based approach to evaluate quantified
statements with the Sugeno Fuzzy Integral based
interpretation.
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