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Abstract. 

This paper is devoted to the evaluation of quantified statements which can be found in many 

applications as decision-making, expert systems or flexible querying of relational databases 

using fuzzy set theory. Its contribution is to introduce the main techniques to evaluate such 

statements and to propose a new theoretical background for the evaluation of quantified 

statements of type “Q X are A” and “Q B X are A”. In this context, quantified statements are 

interpreted using an arithmetic on gradual numbers from ℕf, ℤf and ℚf. It is shown that the 

context of fuzzy numbers provides a framework to unify previous approaches and can be the 

base for the definition of new approaches. 
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INTRODUCTION 

Linguistic quantifiers are quantifiers defined by linguistic expressions  like “around 5” 

or “most of” and many types of linguistic quantifiers can be found in the litterature (Diaz-

Hermida et al., 2003) or (Losada et al., 2006) or (Glockner, 1997, 2004a, 2004b) (as semi-

fuzzy quantifiers which allow to model expressions like “there are twice as many men as 

women”).  We limit this presentation to the original linguistic quantifiers defined by Zadeh 

(1983)  and the two types of quantified statements he proposes.  

Such linguistic quantifiers allow an intermediate attitude between the conjunction 

(expressed by the universal quantifier ∀) and the disjunction (expressed by the existential 

quantifier ∃). Two types of quantified statements can be distinguished. A statement of the first 

type is denoted “Q X are A” where Q is a linguistic quantifier, X is a crisp set and A is a fuzzy 

predicate. Such a statement means that “Q elements belonging to X satisfy A”. An example is 

provided by “most of employees are well-paid” where Q is most of, X is a set of employees 

whereas A is the condition to be well-paid. In this first type of quantified statements, the 

referential (denoted by X) for the linguistic quantifier is a crisp set (a set of employees in the 

example). A second type of quantified statements can be defined where the linguistic 

quantifier applies to a fuzzy referential. This is the case of the statement "most of young 

employees are well-paid" since most of applies to the fuzzy referential made of young 

employees. This statement means that most of elements from this fuzzy referential (most of 

young employees) can be considered well-paid. Such a quantified statement is written "Q B X 
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are A" where A and B are two fuzzy predicates (when referring to the previous example, Q is 

most of, X is a set of employees, B is to be young while A is to be well-paid). 

Linguistic quantifiers can be used in many fields and we briefly recall their use in 

multicriteria decision-making, expert systems, linguistic summaries of data and flexible 

querying of relational databases (some minor applications of linguistic quantifiers as in  

machine learning (Kacprzyck & Iwanski, 1992), or neural networks (Yager, 1992) are not 

dealt with).  

Multicriteria decision-making consists mainly in finding optimal solutions to a 

problem defined by objectives and constraints. A solution must fullfill all objectives and must 

satisfy all constraints.  The use of linguistic quantifiers in decision-making  (Yager, 1983a) or 

(Kacprzyck, 1991) or (Malczewski & Rinner, 2005) or (Fan, Z.P. & Chen, X., 2005)  aims at 

retrieving solutions fullfilling Q objectives with respect to Q’ constraints, where Q and Q’ are 

either a linguistic quantifier or the universal quantifier. A typical formulation is then “find the 

solution where almost all objectives are achieved and where all constraints are satisfied.  

The use of linguistic quantifiers in expert systems concerns mainly the expression and 

handling of logical propositions. An example is provided by  logical statements accepting 

exceptions. A typical statement accepting exceptions is the proposition  “all Sweden are tall” 

which can be turned into “almost all Sweden are tall” involving the linguistic quantifier 

“almost all”. Many inferences involving quantified statements are possible (Mizumoto et al., 

1979) or  (Dubois & Prade, 1988a) or (Dubois et al., 1993) or (Sanchez, 1988) or (Laurent et 
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al., 2003) or  (Loureiro Ralha & Ghedini Ralha, 2004). It is possible to consider the following 

one, set in the probabilistic framework : if  I know that “Karl is Sweden” and that “almost all 

Sweden are tall”, it is then possible to infer that the event “Karl is tall” is probable. The 

challenge is then to compute the degree of probability (which may be imprecise) attached to 

the event “Karl is tall”.  

Data sumarization (Sicilia et al., 2002) or (Kacprzyck, 2006) is another field where 

linguistic quantifiers can be helpful. R.R. Yager (1982)  defines summaries expressed by 

expressions involving linguistic quantifiers (the summary of a database could be “almost the 

half young employees are well-paid”). SummarySQL language (Rasmussen & Yager, 1997) 

has been proposed to define and evaluate linguistic summaries of data defined by quantified 

statements.  As an example, it is possible to use this language to determine the validity 

(represented by a degree) on a given database of the linguistic summary “almost the half 

young employees are well-paid”. 

Flexible querying of relational databases aims at expressing preferences into queries 

instead of boolean requirements as it is the case for regular (or crisp) querying. Consequently, 

a flexible query returns a set of discriminated answers to the user (from the best answers to 

the less preferred). Many approaches to define flexible queries have been proposed and it has 

been shown that the fuzzy set based approach is the more general (Bosc & Pivert, 1992). 

Extensions of the SQL language, namely SQLf (Bosc & Pivert, 1995), and FSQL (Galindo et 

al., 1998) and  (Galindo et al., 2006) and  (Galindo, 2005, 2007) have been proposed to define 
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sophisticated flexible queries calling on fuzzy sets (in this book, reader can find a chapter by 

Urrutia, Tineo and Gonzalez including a comparison between FSQL and SQLf). In this 

context, predicates are defined by fuzzy sets and are called fuzzy predicates and they can be 

combined using various operators such as generalized conjunctions and generalized 

disjunctions (respectively expressed by norms and t-norms) or using more sophisticated 

operators such as averages. Fuzzy predicate can also be defined by a quantified statements, as 

in the query: “retrieve the firms where most of employees are well-paid”. After query 

evaluation, each firm is associated to a degree in [0,1] expressing its satisfaction with respect 

to the quantified statement of the first type: “most of employees are well-paid”. The higher 

this degree, the better answer is the firm. 

To evaluate a quantified statement is to determine the extent to which it is true. This 

paper proposes a new theoretical framework to evaluate quantified statements of type “Q X 

are A” and “Q B X are A”. Propositions are based on the handling of gradual integers (from ℕf 

and ℤf) (Rocacher & Bosc, 2003a, 2003b) and gradual rational numbers (from ℚf) as defined 

in (Rocacher & Bosc, 2003c, 2005). These specific numbers express well-known but gradual 

numbers and differ from usual fuzzy numbers which define imprecise (ill-known) numbers.  

 

Section “Linguistic quantifiers and quantified statements” introduces the definition of 

quantified statements while section “Previous proposals for the interpretation of quantified” is 
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a brief overview of the proposition made for the evaluation of quantified statements. Gradual 

numbers are introduced in section “GRADUAL NUMBERS AND GRADUAL TRUTH 

VALUE” and section “INTERPRETATION OF QUANTIFIED STATEMENTS USING 

GRADUAL NUMBERS” proposes to evaluate quantified statements using gradual numbers. 

In the following, we denotes A(X) the fuzzy set made of elements from a crisp set X which 

satisfy a fuzzy predicate A (A(X) being defined by X ∩ A). 

 

LINGUISTIC QUANTIFIERS AND QUANTIFIED STATEMENTS 

First order logic involves two quantifiers, the universal quantifier (∀) and the 

existential one (∃), which are too limited to model all natural language quantified sentences. 

For this reason, fuzzy quantifiers (Zadeh, 1983) have been introduced to represent linguistic 

expressions (many of, at least 3…) and to refer to gradual quantities. 

It is possible to distinguish between absolute quantifiers (which refer to an absolute 

number such as about 3, at least 2, ...) and relative quantifiers (which refer to a proportion 

such as about the half, at least a quarter, ...). An absolute (resp. relative) quantifier Q in the 

statement "Q X are A" means that the number (resp. proportion) of elements satisfying 

condition A is compatible with Q. 

A linguistic quantifier can be increasing (resp. decreasing) (Yager, 1988) which means 

that an increase in the satisfaction to condition A cannot decrease (resp. increase) the truth 

value of the statement "Q X are A". At least 3, almost all  (resp. at most 2, at most the half) are 
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examples of increasing (resp. decreasing) quantifiers. A quantifier is monotonic when it is 

either increasing, or decreasing and it is also possible to point out unimodal quantifiers which 

refer to a quantity such as about the half, about 4, etc.  

The representation of an absolute quantifier is a fuzzy subset of the real line while a 

relative quantifier is defined by a fuzzy subset of the unit interval [0,1]. In both cases, the 

membership degree μQ(j) represents the truth value of the statement "Q X are A" when j 

elements in X completely satisfy A, whereas A is fully unsatisfied by the others (j being a 

number or a proportion). In other words, the definition of a linguistic quantifier provides the 

evaluation for "Q X are A" in case of a Boolean predicate.  

Consequently, the representation of an increasing (resp. decreasing) linguistic 

quantifier is an increasing (resp. decreasing) function μQ  such that μQ(0) = 0 (resp. μQ(0) = 1) 

and ∃ k such as μQ(k) = 1 (resp. ∃ k such as μQ(k) = 0).  

 
Example. Figure 1 describes the increasing relative linguistic quantifier almost all. 
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Figure 1. A representation for the quantifier almost all• 
 

It is worth mentioning that, in case of an absolute quantifier, a quantified statement of 

type "Q B X are A" reverts to the quantified statement of the other type : "Q X are (A and B)". 

As an example, "at least 3 young employees are well-paid" is equivalent to "at least 3 

employees are (young and well-paid)". As a consequence, when dealing with quantified 

statements of type "Q B X are A", this paper only deals with relative quantifiers. 

 

PREVIOUS PROPOSALS FOR THE INTERPRETATION OF QUANTIFIED 

STATEMENTS 

In this section, the main propositions suggested to determine the truth value of 

quantified statements are briefly overviewed. An in-depth study of quantified statements 

interpretations can be found in (Liu & Kerre, 1998a, 1998b) or (Delgado et al., 2000) or 

(Barro et al., 2003) or (Diaz-Hermida et al., 2004). Subsection “Quantified statements of type 

1 

0                                                  0.7    0.8   0.9  1 proportion p 

μalmost all(p) 
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"Q X are A"” is devoted to the evaluation of quantified statements of type "Q X are A" 

whereas subsection “Quantified statements of type "Q B X are A"” is devoted to the evaluation 

of quantified statements of type "Q B X are A". A short conclusion about these proposals is 

provided in subsection “About the proposed approaches to evaluate quantified statements”. 

 
Quantified statements of type "Q X are A" 

Relative quantifiers are assumed hereafter and the adaptation to absolute quantifiers 

requires only the change of the quantity μQ(i/n) into μQ(i), n being the cardinality of set X 

involved in the quantified statement. 

In the particular case of a Boolean predicate A, the evaluation of "Q X are A" is given 

by μQ(c) where c is the number of elements satisfying A. Some approaches (interpretations 

based on a precise and an imprecise cardinality) extend this definition to a fuzzy predicate A 

assuming that the cardinality of a fuzzy set can be computed. Other approaches (using an 

OWA operator or a Sugeno fuzzy integral) are based on a relaxation principle which implies 

the neglection of some elements. As an example, the interpretation of "almost all employees 

are young" means that some oldest employees can be (more or less) neglected before 

assessing the extent to which the remaining employees are young.  
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 Interpretation based on a precise cardinality 

Zadeh (1983) suggests to compute the precise cardinality of fuzzy set A (called sigma-

count and denoted ∑Count(A)). The sigma-count is defined as the sum of membership 

degrees and the degree of truth of "Q X are A" is then μQ(∑Count(A)/n), n being the 

cardinality of set X.  

The definition of ΣCount(A) implies that a large number of small μA(x) values has the 

same effect on the result than a small number of large μA(x) values. As a consequence, many 

drawbacks can be found, as the one shown by the next example. 

 
Example. Set X = {x1, x2, ..., x10} is such that ∀i, μA(xi) = 0.1. In this case, the result for "∃ X 

are A" is expected to be 0.1 (or at least extremely low). The existential quantifier ∃ is defined 

by μ∃(0) = 0 and ∀i > 0, μ∃(i) = 1 and the absolute quantified statement is evaluated by 

μ∃(∑Count(A)). Computations give ∑Count(A) = 1 which implies that expression "∃ X are A" 

is entirely true (μ∃(1) = 1). This result is very far from the expected one. ♦ 

 

 Interpretation based on an imprecise cardinality 

The method proposed in (Prade, 1990) involves two steps. The first one computes the 

imprecise cardinality πc of the set made of elements from X which satisfy A (it is a fuzzy 

number represented by a possibility distribution of integers). Then, quantifier Q is considered 
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a vague predicate serving as a basis for a matching with πc. The result is a couple of degrees, 

the possibility and the necessity of the fuzzy event "πc is compatible with Q". 

The imprecise cardinality of the set F of elements from X which satisfy A, is given by 

the following possibility distribution (Dubois & Prade, 1985) and  (Prade 1990) : 

 let k be the number of values of F whose degree is 1: πc(k) = 1 (k may equal 0), 
 ∀i < k, πc(i) = 0,  
 ∀j > k, πc(j) is the j

th
 largest value μF(x). 

 
In the particular case where F is a usual set, πc describes a precise value (πc(k) = 1 and πc(i) 

= 0 ∀ i ≠ k) which is the usual cardinality of this set. 

 
The possibility Π(Q ; πc) and the necessity N(Q ; πc) of the fuzzy event "πc is compatible 

with Q" are (Dubois et al., 1988b) 

Π(Q ; πc) =  max 1 ≤ i ≤ n min (μQ(i/n), πc(i))          and        
Ν(Q ; πc) =  min 1 ≤ i ≤ n max (μQ(i/n), 1 - πc(i)). 

 
Example. Let Q be the increasing relative quantifier almost all defined in figure 2 and 

X = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10} with μA(x1) = μA(x2) = ... = μA(x7) = 1, μA(x8) = 0.9, 

μA(x9) = 0.7,  μA(x10) = 0.  
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0                                                     0.7         0.8       0.9        1    proportion 

1

0.25

μalmost all(p)

 
Figure 2. A representation for the quantifier almost all 

We have:   

πc(7) = 1, πc(8) = 0.9 and πc(9) = 0.7, 

with: 

μalmost all(1/10) = ... = μalmost all(7/10) = 0, μalmost all(8/10) = 0.25, μalmost all(9/10) = μalmost all(1) = 1. 

The interpretation of "almost all X are A" leads to: 

Π(Q ; πc) =  max min(μalmost all(7/10), πc(7)), max(μalmost all(8/10), πc(8)),  
max(μalmost all(9/10), πc(9)) 

 

    = max min(0, 1), min (0.25, 0.9), min (1, 0.7) = 0.7,    

 

Ν(Q ; πc) =  min max(μalmost all(7/10), 1 - πc(7)), max(μalmost all(8/10), 1 - πc(8)),   
          max(μalmost all(9/10), 1 - πc(9)) 

 

     =  min max (0 , 0), max (0.25, 0.1), max(1, 0.3) = 0♦ 
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 Interpretation by the OWA operator 

We assume that X = {x1, ..., xn} and μA(x1) ≥ μA(x2) ≥ ... ≥ μA(xn). The interpretation of 

"Q X are A" (Q being increasing), by an ordered weighted average (OWA operator) is given 

by (Yager, 1988):  

 

))(μ*(
1

A∑
=

n

i
ii xw , 

 
where wi = μQ(i/n) - μQ(i-1/n). Each weight wi represents the increase of satisfaction when 

comparing a situation where (i-1) elements are entirely A with a situation where i elements are 

entirely A (and the others are not at all A). This operator conveys a semantics of relaxation 

since the smaller wi, the more neglected μA(xi).  

An extension of the use of the OWA operator to decreasing quantifiers has been 

proposed by Yager (Yager, 1993) and Bosc and Liétard (Bosc & Liétard, 1993). The 

extension is based on the equivalence: 

"Q X are A" ⇔ "Q' X are A ", 
 

where Q' is the antonym of the decreasing quantifier Q (Q' is then an increasing quantifier 

given by ∀p ∈ [0,1], μQ'(p) = μQ(1-p)). It is then possible to use the initial proposition to 

interpret "Q' X are A ". 
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 In addition, when Q is not monotonic, this approach leads to the GD method 

introduced in section “The probabilistic approach (GD method)”. 

 

The probabilistic approach (GD method) 

This method (Delgado et al., 2000) is based on the following imprecise cardinality of 

the fuzzy set A(X) : 

∀k ∈ {0,1,2,.. n}, p(k) = bk – bk+1, 

where n is the cardinality of set X and bk is the kth largest value of belongingness of an 

element to the fuzzy set A(X) (with b0 = 1 and bn+1 = 0). A value p(k) can be interpreted as the 

probability that set A(X) contains k elements.  The evaluation of a “Q X are A” statement with 

an absolute quantifier is : 

∑
=

×
n

k
Q kkp

0
)()( μ  

When Q is relative, the evaluation becomes : 

∑
=

×
n

k
Q nkkp

0
)/()( μ . 

This interpretation is clearly the average value of the different values taken by the linguistic 

quantifier. 
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The ZS method 

The ZS method proposed in (Delgado et al., 2000) considers the following fuzzy 

cardinality π of the fuzzy set A(X) of elements which satisfy predicate A : 

 

π(k) = 0 if it does not exist a level cut α such that |A(X)α|  = k, 

otherwise π(k) = sup{α such that |A(X)α|  = k} . 

 

This fuzzy cardinality can be interpreted as a possibility. The interpretation δ of the 

quantified statement “Q X are A” is the compatibility of the fuzzy quantifier Q with that fuzzy 

cardinality: 

δ = max 1 ≤ k ≤ n min (μQ(k), π(k)), 
 

where n is the cardinality of set X.  

This evaluation clearly provides the possibility of the event “the cardinality satisfies 

Q” (as in the approach briefly introduced in 3.1.2). In addition, it is a generalization (Delgado 

et al., 2000) of the Sugeno fuzzy integral approach since when Q is increasing, the ZS and the 

Sugeno integral methods lead to a same result. 
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Interpretation based on a Sugeno fuzzy integral   

The interpretation of "Q X are A" (Q being increasing) by a Sugeno fuzzy integral 

(Bosc & Liétard, 1994a, 1994b) or  (Ying 2006) is given by:  

δ = max 1 ≤ i ≤ n min (μQ(i), μA(xi)),  
 

where μA(x1) ≥ μA(x2) ≥ ... ≥ μA(xn). Due to the properties of the Sugeno fuzzy integral, δ states 

the existence of a subset C of X such that: 

• each elements in C is A with some concrete degree, 
• subset C is in agreement with the linguistic quantifier Q. 

 
Since Q is increasing, the more these two aspects are met, the higher the truth value for "Q X 

are A". As an example, "almost all employees are young" is evaluated by the existence of a 

subset of young employees which gathers almost all the employees. More precisely, δ can 

also be defined by: 

δ = max C ∈ P(X) min(p1(C), p2(C)), 
 

where P(X) denotes the powerset of X and p1(C) is defined by min x ∈ C μA(x), whereas p2(C) is 

given by μQ(|C|/n), n being the cardinality of set X.  

In addition, it can be demonstrated (Dubois et al., 1988) that this interpretation can 

also be given by a weighted conjunction:  

δ = min 1 ≤ i ≤ n max (1 - wi , μA(xi)), 
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where wi = 1 - μQ((i-1)/n) is the importance given to degree μA(xi). Here again, the smaller wi, 

the more neglected μA(xi).  

This Sugeno fuzzy integral based evaluation is a particular case of a proposition (Bosc 

& Liétard, 2005) made in a more general framework to evaluate the extent to which an 

aggregate (computed on a fuzzy set, the cardinality in case of a quantified statement) is 

confronted to a fuzzy predicate (a linguistic quantifier). So, it can be easily extended to any 

kind of linguistic quantifiers.  

 

Quantified statements of type "Q B X are A" 

This section presents the previous propositions for the interpretation of fuzzy 

quantified statements of type "Q B X are A". Here again, a relative quantifier Q is considered. 

 

Interpretation with an OWA operator 

R.R. Yager (1988) suggests to interpret the expression "Q B X are A" by an ordered 

weighted averaging (OWA). Let X = {x1, ..., xn} with: μB(x1) ≤ μB(x2) ≤ ... ≤ μB(xn) and: 

∑
=

(
n

1i
i )xΒμ = d.  

The weights of the average are defined by: 

wi = μQ(Si) - μQ(Si-1) with Si = ∑
j = 1

i

 μB(xj) /d,  
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and S0 = 0. This operator aggregates the values of the implication μB(x) →K-D μA(x) where →K-D 

denotes Kleene-Dienes implication (a →K-D b = max (1 - a, b)). If the implication values ci 's 

are sorted in  a decreasing ordrer c1 ≥ c2 ≥... ≥ cn,  the interpretation of "Q B X are A" is: 

∑
=

).
n

1ι
ιi w*(c  

This calculus uses an OWA operator to aggregate implication values. As an example, the truth 

value obtained for "most of young employees are well-paid" is that of "for most of the 

employees, to be young implies to be well-paid". The obtained result is far from the original 

meaning of the quantified statement. 

 
 Interpretation by decomposition 

The interpretation by decomposition described in (Yager 1983, 1984) is limited to 

increasing quantifiers. The proposition "Q B X are A" is true if an ordinary subset C of X 

satisfies the conditions p1 and p2 given hereafter: 

p1: there are Q elements B in C, 

p2: each element x of C satisfies the implication: (x is B)  → (x is A). 

The truth value of the proposition: "Q B X are A" is then defined by: 

sup C ∈ P(X) min (p1(C), p2(C)),                                   
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where p1(C) (resp. p2(C)) denotes the degree of satisfaction of C with respect to the condition 

p1 (resp. p2). The value p1(C) is defined by μQ(h) where h is the proportion of elements B in set 

C. Yager suggests the following definition of h (using ∑Counts): 

h = 
∑
∑

∈

∈

Xx
B

Cx
B

)x(μ

)x(μ

. 

The value of p2(C) is:  

∧x ∈ C  μB(x) → μA(x)  

where ∧ is any triangular norm and →  a fuzzy implication.  

This interpretation leads to evaluate, the quantified statement by an aggregation of 

implication values μB(x) → μA(x). Similarly to the OWA based interpretation of "Q B X are A", 

this interpretation is far from the original meaning for "Q B X are A". 

 
Proposition of Vila, Cubero, Medina and Pons 

According to this proposition (Vila et al., 1997), the degree of truth for "Q B X are A" 

is defined by: 

  δ = α * max x∈X  min(μA(x), μB(x)) + (1 – α) * min x∈X  max(μA(x), 1–μB(x)), 
 

where α is a degree of Orness (Yager & Kacprzyck, 1997) computed from the linguistic 

quantifier: 
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 α = ))).n/)1i((μ)n/i(μ(
)1n(
)in(( QQ

n

1i
−−∗

−
−∑

=
 

 
The interpretation of "Q B X are A" is a degree set between the truth value of "∃ B X are A" 

(given by maxx∈X  min(μA(x), μB(x))) and that of  "∀ B X are A" (given by minx∈X  max(μA(x),1–

μB(x))). The closer to one is α, the more "Q B X are A" is interpreted as "∃ B X are A".  

 
Example. Let us consider X = {x1, x2, x3} where the satisfaction degrees with respect to 

predicates B and A are given by table 1. 

  x1 x2 x3 

 B 1 1 1 

 A 1 0 0 

Table 1. Satisfaction degrees with respect to B and A 

The value of α is given by: 
 

           α = 1 *  (μalmost all(1/3) - μalmost all(0)) + 1/2 * (μalmost all(2/3) - μalmost all(1/3))  
                                                                                           + 0* (μalmost all(1) - μalmost all(2/3)).  

 
The linguistic quantifier almost all is such that: μalmost all(0) = 0, μalmost all(1/3) = 0.2, μalmost all(2/3) 

= 0.8 and μalmost all(1) = 1 and we get: 

α = 1 *  (0.2 - 0) + 1/2 * (0.8 - 0.2) + 0 * (1 - 0.8) = 0.2 + 0.3 = 0.5. 
 

The final result is then: 
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δ = α * max x∈X  min(μA(x), μB(x)) + (1 – α) * min x∈X  max(μA(x),1-μB(x)) 

   = 0.5 * 1 + (1-0.5) * 0 = 0.5. 

As a consequence "almost all B X are A" is true at degree 0.5 which is far from the expected 

result (since the proportion of A elements among the B elements is 1/3 and μalmost all(1/3) = 0.2). 

♦ 

The GD method for “Q B X are A” statements 

Delgado et al. (Delgado et al., 2000) propose a probabilistic view of the proportion of 

A elements among the B elements. Computations are related to the two fuzzy sets B(X) and 

A(X)∩B(X). In addition, when fuzzy sets B(X) and (A(X) ∩ B(X)) are not normal, they should 

be normalized (using any technique).  

The set  S = {α1, α2, …, αm} is the set made of the different satisfaction degrees of 

elements from X with respect to fuzzy conditions B and A ∩ B (it is considered that 1 = α1 > 

α2 > …>  αm > αm+1 = 0) and P the set of the different proportions  provided by the α-cuts : 

P = {
α

αα
)X(B

)X(B)X(A ∩
 where α is in S}.  

If we denote P-1(c) the set of levels from S having c as relative cardinality (c being in P) : 

P-1(c) = {αi from S such that 
i

ii

)X(B

)X(B)X(A

α

αα ∩
 = c}, 
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the probability p(c) for a proportion c (in [0,1]) to represent 
)X(B

)X(B)X(A ∩
 is defined by : 

p(c) = ∑ +−
)(cP in

1ii
1-

 i

)(
α

αα  = ∑
∩

=

+−

i

ii
 i B(X)

B(X)A(X)
  c that such

1ii )(

α

ααα

αα . 

The evaluation of “Q B X are A” is then : 

∑ ×
P in c

Q ).c()c(p μ  

About the proposed approaches to evaluate quantified statements 

Some properties to be verified by any technique to evaluate quantified statements of 

type “Q X are A” and “Q B X are A” have been proposed in the litterature (Delgado et al., 

2000; Blanco et al., 2002) and it is possible to situate the different propositions with respect to 

this properties. At first, these properties are introduced and then the evaluation of quantified 

statements are discussed. 

Concerning “Q X are A” statements the following properties can be considered : 

 

Property 1. If predicate A is crisp, the evaluation must deliver μQ(|A(X)|) in case of absolute 

quantifier and μQ(|A(X)|/n) in case of a relative quantifier (where A(X) is the crisp set made of 

element from X which satisfy A and n is the cardinality of crisp set X). 
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Property 2. The evaluation is coherent with the universal and existential quantifiers. It means 

the evaluation of “Q X are A”  is )(xAXx
μ

∈
∨ when Q is  ∃ and )(xAXx

μ
∈
∧ when Q is ∀ ( ∨  and ∧  

being respectively a conorm and a norm). 

Property 3. The evaluation is coherent with quantifiers inclusion. Given two quantifiers Q and 

Q’ such that Q ⊆ Q’ (∀x, μQ(x) ≤ μQ’(x)), the evaluation of “Q X are A” cannot be larger then 

that of “Q’ X are A”. 

Concerning the “Q B X are A” statements, it is possible to recall:  

Property 4. If A and B are crisp and Q is relative, the evaluation must deliver μQ(|A(X) ∩ 

B(X)|/|B(X)|) where A(X) (resp. B(X)) is the set made of elements from X which satisfy A 

(resp. B).  

 

Property 5. When B is a Boolean predicate, the evaluation of “Q B X are A” is similar to that 

of “Q B(X) are A” where B(X) is the (crisp) set made of elements from X which satisfy B. 

 

Property 6. If the set of elements which are B is included in the set of A elements, Q is relative 

and B is normalized, then the evaluation of “Q B X are A” is μQ(1)  (since 100% of B 

elements are A due to the inclusion). 
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Property 7. If A(X) ∩ B(X) = ∅ (where A(X) (resp. B(X)) is the set made of elements from X 

which satisfy A (resp. B)), then the evaluation must return the value μQ(0).  

 

When considering the evaluation of "Q X are A" statements, the approaches based on 

cardinalities deliver a result which can be difficult to interpret. In case of a precise cardinality, 

the main drawback is that a large number of elements with small membership degrees may 

have same effect on the result than a small number of elements with large membership 

degrees. As a consequence, property 2 cannot be satisfied (this behaviour is demonstrated in 

(Delgado et al., 2000)). In addition as shown in (Delgado et al., 2000), property 1 and 3 are 

satisfied. In case of an imprecise cardinality, the result of the interpretation is imprecise since 

it takes the form of two indices : a degree of possibility and a degree of necessity.  This 

imprecision tied to the result is difficult to justify because computations take into account a 

precise quantifier and precise degrees of satisfaction, so why should it delivers an imprecise 

result ? Moreover, the approaches to evaluate "Q X are A" using a relaxation mechanism 

provide a result with a clear meaning and easy to interpret. Theses approaches (including ZS 

technique) satisfy (Delgado et al., 2000) properties 1, 2 and 3. 

When considering the evaluation of "Q B X are A" statements, the approach based on 

the OWA operator and on a decomposition technique considers a modification of the meaning 

of the quantified statement since "Q B X are A"  is interpreted as "for Q elements in X, to 

satisfy B implies to satisfy A". These two approaches satisfy properties 4 and 5, while 
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properties 7 and 6 are not fulfilled (Delgado et al., 2000). The approach proposed by Vila et 

al. (1997) interpret the quantified statement by a compromise between "∃ B X are A" and "∀ B 

X are A". As a consequence, it may leads to a result which does not fit the quantifier’s 

definition (and none of the properties introduced in this section can be satisfied (Delgado et 

al., 2000)). The method GD satisfies all properties (properties 4, 5, 6, 7). 

 

Next sections show that the framework of gradual numbers offers powerful tools to 

evaluate quantified statements. This context allows to unify the previous propositions made to 

evaluate quantified statements of type "Q X are A" (and based on a relaxation mechanism). In 

addition, gradual numbers offers new techniques to evaluate "Q B X are A" statements.  

 

GRADUAL NUMBERS AND GRADUAL TRUTH VALUE 

It has been shown (Rocacher, 2003) that dealing with both quantification and 

preferences defined by fuzzy sets leads to define gradual natural integers (elements of ℕf) 

corresponding to fuzzy cardinalities. Then, ℕf has been extended to ℤf (the set of gradual 

relative integers) and ℚf (the set of gradual rationals) in order to deal with queries based on 

difference or division operations (Rocacher & Bosc, 2005). These new frameworks provide 

arithmetic foundations where difference or ratio between gradual quantities can be evaluated. 

As a consequence, gradual numbers are essential in particular for dealing with flexible queries 
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using absolute or relative fuzzy quantifiers. This is the reason why this section shortly 

introduces ℕf, the set of gradual integers, and its extensions ℤf and ℚf. Then, it is shown that 

applying a fuzzy predicate on a gradual number provides a specific truth value which is also 

gradual.  

 

Gradual natural integers  

The fuzzy cardinality |F| of a fuzzy set F, as proposed by Zadeh (1983) is a fuzzy set 

on ℕ, called FGCount(F), defined by: 

∀ n ∈ ℕ, μ|F|(n) = sup{α | |Fα| ≥ n}, 

where Fα denotes an α-cut of fuzzy set F. The degree α associated with a number n in the 

fuzzy cardinality |F| is interpreted as the extent to which F has at least n elements. It is a 

normalized fuzzy set of integers and the associated characteristic function is nonincreasing. 

 

Example. The fuzzy cardinality of the fuzzy set F = {1/x1, 1/x2, 0.8/x3, 0.6/x4} is: |F| = {1/0, 

1/1, 1/2, 0.8/3, 0.6/4}. The amount of data in F is completely and exactly described by {1/0, 

1/1, 1/2, 0.8/3, 0.6/4}. Degree 0.8 is the extent to which F contains at least 3 elements.♦ 

 

It is very important to notice that we do not interpret a fuzzy cardinality as a fuzzy 

number based on a possibility distribution (which has a disjunctive interpretation). In fact, the 
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knowledge of all the cardinalities of all different α-cuts of a fuzzy set F provides an exact 

characterization of the number of elements belonging to F. Consequently |F| must be viewed 

as a conjunctive fuzzy set of integers. As matter of fact, the considered fuzzy set F represents 

a perfectly known collection of data (without uncertainty), so its cardinality |F| is also 

perfectly known. We think that it is more convenient to qualify such cardinality as a “gradual” 

number rather than a “fuzzy” number. Other fuzzy cardinalities based on the definition of 

FGCounts, such as FLCounts or FECounts, have been defined by Zadeh (1983) or Wygralak 

(1999). Dubois and Prade (1985) and Delgaldo et al. (2002) have adopted a possibilistic point 

of view where a fuzzy cardinality is interpreted as a possibility distribution over α-cuts 

corresponding to a fuzzy number (D. Dubois, H. Prade, 1987).  

The rest of this paper is based on such a fuzzy cardinality defined as FGCounts and 

the set of all fuzzy cardinalities is called ℕf (the set of gradual natural integers). 

The α-cut xα of gradual natural integer x is an integer defined as the highest integer 

value appearing in the description x associated with a degree at least equal to α. In other 

words, it is the largest integer appearing in the α-level cut of its representation: 

xα = max{c ∈ ℕ⏐μx(c) ≥ α}. 

When x describes the FGCount of a fuzzy set A, the following equality holds: 

xα = ⏐Αα⏐. 
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This approach is along the line presented by Dubois and Prade (2005) where they 

introduce the concept of fuzzy element e in a set S defined as an assignment function ae from 

a complete lattice to L-{0} to S. Following this view, a gradual natural integer x belonging to 

ℕf can be defined by an assignment function ax from ]0, 1] to ℕ such that: 

∀ α ∈ ]0, 1], ax(α) = xα. 

If x is identified to a fuzzy cardinality |F| of a fuzzy set F, then ax(α) is the cardinality of the α 

level cut of F.  

 

Example. |F| = {1/0, 1/1, 1/2, 0.8/3, 0.6/4} is a gradual natural integer defined by an 

assignment a function a|F| graphically represented by figure 3.  

Figure 3.  The assignment function of a fuzzy cardinality.  

As an example, a|F|(0.7) = |F0.7| = 3. ♦ 

a|F|(α) 

N 

0                               0.6       0.8           1           α 

4 

3 

2 

1 

0 
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Any operation # between two natural integers can then be extended to gradual natural 

integers x and y (Rocacher & Bosc, 2005) by defining the corresponding assignment function 

ax#y as follows:  

∀ α ∈ ]0, 1], ax#y(α) = ax(α) # ay(α) = xα # yα.  

Due to the specific characterization of gradual integers, it can easily be shown that ℕf 

is a semi-ring structure. So the addition and product operations satisfy the following 

properties: (ℕf, +) is a commutative monoïd (+ is closed and associative) with the neutral 

element {1/0} ; (ℕf, ×) is a monoïd with the neutral element {1/0, 1/1}; the product is 

distributive over the addition. 

 

Gradual relative integers 

In ℕf the difference between two gradual natural integers may be not defined. As a 

consequence, ℕf has to be extended to ℤf in order to build up a group structure.  

The set of gradual relative integers ℤf is defined by the quotient set (ℕf × ℕf) / ℛ of all 

equivalence classes on (ℕf × ℕf) with regards to ℛ the equivalence relation  characterized by: 

∀ (x+, x-) ∈ ℕf × ℕf, ∀ (y+, y-) ∈ ℕf  × ℕf,(x+, x-) ℛ (y+, y-)  iff x+ + y- = x- + y+. 
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The α-cut of a fuzzy relative integer (x+, x-) is defined as the relative integer (x+
α - x-

α). 

Any fuzzy relative integer x has a unique canonical representative xc which can be obtained 

by enumerating the values of its different α-cuts on ℤ: 

xc = ∑ αi / (x+
αi - x

-
αi) 

where αi’s correspond to the different degrees appearing in the representation of x+ and x-. 

Each value xα can be computed from the canonical representation since xα equals μ
xc(β) with β 

the immediate value larger than or equal to α. 

The assignment function ax of x is a function from ]0, 1] to ℤ such that:  

∀ α ∈ ]0, 1], ax(α) = x+
α - x-

α = xα 

Example. The compact denotation of the fuzzy relative (x, y) (with: x = {1/0, 1/1, 0.8/2, 0.5/3, 

0.2/4} and y = {1/0, 1/1, 0.9/2}) is:  

(x, y)c = {1/0, 0.9/-1, 0.8/0, 0.5/1, 0.2/2}c.  

As an example, for a level of 0.9 we get : x0.9 = 1 while y0.9 = 2. As a consequence, the α-cut 

of (x, y) at level 0.9 is x0.9  –  y0.9  = -1. The assignment function of (x, y) is represented by 

figure 4.   
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Figure 4. Assignment function of the gradual relative integer (x, y)♦ 

 

If x and y are two gradual relative integers, the addition x + y and the multiplication are 

respectively defined by the classes (x+ + y+, x- + y-) and ((x+ × y+) + (x- × y-), (x+ × y-) + (x- × 

y+)). The addition is commutative, associative and has a neutral element, denoted by 0ℤf, 

defined by the class {(x, x) / x ∈ ℕf}. 

Each fuzzy relative integer (x+, x-) has an opposite, denoted by -x = (x-, x+). This is 

remarkable because in the framework of usual fuzzy numbers this property is not always 

satisfied. It can be easily checked that the product in ℤf is commutative, associative and 

distributive over the addition. The neutral element is the fuzzy relative integer ({1/0, 1/1}, 

{1/0}). Therefore we conclude that (ℤf, + , ×) forms a ring. 

ax(α) 

Z 

0        0.2                 0.5       0.8     0.9     1           α 
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          -1 
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Gradual rational numbers 

The question is now to define an inverse to each gradual integer and to build up the set 

of gradual rational numbers. We define ℤf
*  as the set of gradual integer x such that: ∀α ∈ ]0, 

1], xα ≠ 0 and ℛ’ as the equivalence relation such that:  

∀(x, y) and (x’, y’) ∈ ℤf
 × ℤf

 *, [x, y] ℛ’ [x’, y’] iff x × y’ = x’ × y.  

The set of fuzzy rational numbers ℚf is defined by the quotient set (ℤf × ℤf
*) / ℛ’.   

The representation of a fuzzy relational number x can also be represented thanks to a 

more simple compact representation (denoted by xc) by enumerating values associated with 

the different α-cuts which are rationals. The assignment function ax of x is a function from ]0, 

1] to ℚ is defined by:  

∀ α ∈ ]0, 1], ax(α) = reduce((xn+
α - x

n-
α) ÷ (xd+

α - x
d-

α)). 

where the operator reduce means that the rational is reduced to its canonical form. 

 

Gradual truth value 

This section proposes a computation to determine the truth value obtained when 

applying a fuzzy predicate on a gradual number. Let be x an element of ℕf or ℤf or ℚf, its 

assignment function ax is defined by: ∀ α ∈ ]0, 1], ax(α) = xα. If T is a fuzzy predicate, the 
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application of the predicate T on x produces a global satisfaction S (called gradual truth value) 

characterized by the assignment function defined by:   

∀ α ∈ [0, 1], aS(α) = T(xα) = T(ax(α)). 

For a given level α, aS(α) represents the satisfaction of the corresponding α-cut of the fuzzy 

number. In other words, for a given level α, the fuzzy number satisfies predicate T at degree 

aS(α). 

Example. We consider the fuzzy predicate high defined by figure 5.  

 

 

 

 

 

Figure 5. The fuzzy predicate high. 

 

If the number of young employees is the gradual integer x = {1/15, 0.7/20, 0.2/25} (which 

means that 15 employees are completely young, 5 employees have the same age and are 

young at the level 0.7, whereas 5 other people are rather not young since their level of youth is 

estimated at 0.2). The assignment function for x is the following : 

 

∀α ∈ [0, 0.2], ax(α) = 25,  ∀α ∈ ]0.2, 0.7], ax(α) = 20,   ∀α ∈ ]0.7, 1], ax(α) = 15. 

1 

μhigh(n) 

0         10        20        30          40                         n 
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The application of the predicate high on the gradual integer x produces a global 

satisfaction S whose function of assignment is defined by : 

∀ α ∈ [0, 1], aS(α) = T(xα) = T(ax(α)). 

We get the gradual truth value given by figure 6. 

 

 

 

 

 

 

 

Figure 6. Gradual truth value corresponding to a global satisfaction S ♦ 

 

This gradual truth value shows the different results associated to the different α-cuts. When 

referring to previous example and when considering level 0.8, the fuzzy cardinality x states 

that the cardinality of this α-cut is 15 (x0.8 = 15).  Since μalmost all(15) = 0.25, this cardinality 

satisfies to be high at degree 0.25. It can be checked that αs(0.8) = 0.25. 

 

αs(α) 

0          0.2                                   0.7            1     α 

1 

0.75 

0.5 

0.25 
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INTERPRETATION OF QUANTIFIED STATEMENTS USING GRADUAL NUMBERS 

Section “Quantified statements of type “Q X are A”” considers the evaluation of a 

quantified statement of type “Q X are A” while section “Quantified statements of type “Q B X 

are A” where Q is relative” is interested in the evaluation of statement of type “Q B X are A”, 

where Q is relative. Each one of these computations provides a gradual truth value. As a 

consequence, section “A scalar truth value for the interpretation” proposes  a scalar 

interpretation computed from this gradual truth value. 

 

Quantified statements of type “Q X are A” 

The gradual cardinality of the fuzzy set A(X) made of elements from X which satisfy A 

is a FGCount denoted c and belongs to ℕf. When Q is absolute, the gradual truth value for “Q 

X are A” is given by the satisfaction of a fuzzy condition (a constraint represented by the 

quantifier) for that gradual number. As described in section “Gradual truth value”, we get:  

∀ α ∈ [0, 1], μS(α) = μQ(c(α)).          

From the definition of the FGCount, we get: 

∀ α ∈ [0, 1], μS(α) = μQ(|A(X)α|).             

In other words, the fuzzy truth value S expresses the satisfaction of each α-cut of A(X) with 

respect to the linguistic quantifier.  
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In case of a relative linguistic quantifier, the truth value of “Q X are A” is given by the 

satisfaction of the linguistic quantifier into the proportion of elements which are A. We get: 

∀ α ∈ [0, 1], μS(α) = μQ(c(α)/n) = μQ(|A(X)α|/n),                     

where n is the cardinality of set X. 

 

Example. We consider the statement “about 3 X are A” where X = {x1, x2, x3, x4} such that 

μA(x1) = μA(x2) = 1, μA(x3) = 0.8, μA(x4) = 0.6. The linguistic quantifier about 3 is given by 

figure 7.  

Figure 7. A representation for the quantifier about 3 
 

The gradual truth value for “about 3 X are A” (defined by: ∀ α ∈ [0, 1], μS(α) = 

μQ(c(α))) is given by figure 8. 

1 

μabout 3(n) 

0           1           2            3           4             5                  n 
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Figure 8. A fuzzy truth value for “about 3 X are A” 

 

This gradual truth value provides the satisfaction obtained for the different α-cuts of A(X) (set 

made of elements from X which satisfy fuzzy condition A). As an example μS(0.7) = 

μQ(|A(X)0.7|) = μQ(3) = 1. ♦ 

 

Quantified statements of type “Q B X are A” where Q is relative 

The truth value of “Q B X are A” (Q being relative) is given by the satisfaction of the 

linguistic quantifier into the proportion of elements which are A among the elements which 

satisfy B. This proportion is a ration between two gradual integers:   

p = c/d,  

where: 

• c is the cardinality (FGCount) of the fuzzy set (A∩B)(X) made of elements from X 

which satisfy fuzzy condition A and condition B (∀x in X, μA∩B(X) = min(μA(x), μB(x)),  

1 

         0.5 

μS(α) 

0                                           0.6        0.8         1             α 
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• d is the cardinality (FGCount) of the fuzzy set B(X) made of elements from X which 

satisfy fuzzy condition B. 

 

The gradual rational number c/d is defined by the couple (c, d). A canonical 

representation for c/n is:  

∀ α ∈ [0, 1], p(α) = c(α)/d(α). 

This canonical definition is defined only when d(α) ≠ 0. The cardinality c (resp. d) being that 

of the fuzzy set (A∩B)(X) (B(X)), we get: 

∀ α ∈ [0, 1], p(α)  = |(A∩B)(X)α|/|B(X)α|, 

where |B(X)α| ≠ 0. It means that p(α) is not defined for α > max x ∈ X μB(x), and we can write: 

∀ α ∈ [0, max x ∈ X μB(x)], p(α)  = |(A∩B)(X)α|/|B(X)α|. 

 

The gradual truth value for “Q B X are A” is given by the satisfaction of the constraint 

represented by the quantifier for that gradual proportion. According to the results introduced 

in section “Gradual truth value”, a gradual truth value S is obtained: 

∀ α ∈ [0, max x ∈ X μB(x)], μS(α) = μS(p(α)) = μQ(|(A∩B)(X)α|/|B(X)α|).             

The fuzzy truth value S expresses the satisfaction of each α-cut of A(X) and (A∩B)(X) with 

respect to the linguistic quantifier.  
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The value α is viewed as a quality threshold for the satisfactions with respect to A and 

B. When the minimum is chosen as norm to define (A∩B)(X), the value of μS(α) states that: 

“among the elements which satisfy B at least at level α, the proportion of elements x with 

μA(x) ≥ α, is in agreement with Q” (since we have (A∩B)(X)α  =  A(X)α∩B(X)α). In other 

words, μS(α) is the truth value of the quantified statement when considering the two 

interpretations  A(X)α and B(X)α. 

In addition, the fuzzy truth value S is not defined when α > max x ∈ X μB(x). A first 

attitude is to normalize B and A ∩ B or to employ the degree of orness defined by Yager and 

Kacprzyck (1997) so that that μS(α) = orness(Q).  A second attitude which will be considered 

in this chapter is  to assume that μS(α) = 0 in that case. 

 

Example. We consider the statement “about half B X are A” where X = {x1, x2, x3, x4}. The 

satisfaction degrees are given by table 2.  

 

 

 

 

  x1 x2 x3 x4 

 μB(xi) 1 0.9 0.7 0.3 
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 μA(xi) 0.8 0.3 1 1 

 μΑ∩B(xi) 0.8 0.3 0.7 0.3 

 

Table 2. Satisfaction with respect to B and A. 

The linguistic quantifier about half is given by figure 9. 

Figure 9. A representation for the quantifier about half 
 

The gradual truth value for “about half B X are A”is given by figure 10. 

 

1 
μabout half(p) 

0                        0.5                         1        proportion p 
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Figure 10. A fuzzy truth value for “about half B X are A” 

 

As an example, we get μS(0.6) = 1/3 because |(A∩B)(X)0.6|/|B(X)0.6| = 2/3 and μQ(2/3) = 1/3. 

The truth value of the statement “about half elements in {x such that μB(x) ≥ 0.6} are in {x 

such that μA(x) ≥ 0.6}” is 1/3. ♦ 

 

A scalar truth value for the interpretation 

The fuzzy truth value S computed in the previous section gathers the satisfactions of 

the different α-cuts with respect to the linguistic quantifier. This fuzzy truth value can be 

defuzzified in order to obtain a scalar evaluation (set in [0, 1]). Various interpretations can be 

associated to this defuzzification and we consider the following one (since it is the more 

natural): 

 

               “the more α-cuts highly satisfies the constraint defined by the linguistic quantifier,  

μS(α) 1 

       

         1/3 

0            0.3                               0.7         0.8         1             α 
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                                                                                             the higher the scalar interpretation”.  

 

Obviously, when the scalar interpretation is 1, each α-cut fully satisfies the constraint. 

When dealing with a quantified statement of type “Q X are A”, a scalar evaluation of 1 means 

that whatever is the chosen interpretation for A(X) (set made of elements from X which satisfy 

A), its cardinality is in agreement with the linguistic quantifier (i.e ∀ α, μQ(|A(X)α|) = 1 or 

μQ(|A(X)α|/n) = 1). Otherwise, the higher the scalar evaluation, the more there exists 

interpretations of A(X) with a high satisfaction with respect to the linguistic quantifier.  

When dealing with a quantified statement of type “Q B X are A”, the scalar evaluation 

is also interpreted in terms of α-cuts, i.e. in terms of interpretations of fuzzy sets. For a given 

level α, the degree μS(α) provided by the gradual truth value represents the satisfaction of the 

quantifier with respect to the proportion: |(A∩B)(X)α|/|B(X)α| (μS(α) is the truth value of the 

quantified statement when considering the two interpretations (A∩B)(X)α and B(X)α). 

The scalar value aggregates the different satisfactions provided by the different levels 

and a scalar evaluation of 1 means that whatever is the chosen quality threshold α, the 

proportion is in complete agreement with Q. Otherwise, the higher the scalar evaluation, the 

more there exists quality thresholds such that the proportion highly satisfies Q. 
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In section “a quantitative approach”, we consider a quantitative defuzzification (since 

based on an additive measure – a surface) while in section “a qualitative approach”  we 

consider a qualitative defuzzification (since based on a non additive process). Section 

“Satisfaction of properties” situates the results provided by these two defuzzifications with 

respect to the properties introduced in “about the proposed approaches to evaluate quantified 

statements”. 

 

 A quantitative approach  

In this approach, the surface of the fuzzy truth value is delivered to the user. The 

scalar interpretation is then  (Liétard & Rocacher, 2005): 

   δ  = 
p

p dp
/11

0
1

S )**)(μ(∫ − ααα .   

When p = 1, value δ is the area delimited by function μS. Since this function is a stepwise 

function, we get: 

δ = (α1 – 0) * μS(α1) + (α2 – α1) * μS(α2) +...+ (1 – αn) * μS(1),                                              

where the discontinuity points are: (α1, μS(α1)),..., (αn, μS(αn)) with α1 < α2 < ... < αn.  

 

Example. We consider the statement “about half B X are A” and the fuzzy truth value given by 

figure 9. We compute: 

δ = (0.7 – 0.3) * 1/3 + (0.8 – 0.7)*1 = 0.233. 
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The scalar result is rather low. When referring to table 2, it seems that the proportion of 

elements which are A among the B elements is near to be 2/3. A low result for “about half  B 

X are A” is coherent since the proportion 2/3 poorly satisfies the constraint about half. ♦ 

 

It has been shown (Liétard & Rocacher, 2005) that, when dealing with quantified 

statements of type “Q X are A”, this approach is a generalization of the OWA based 

interpretation (introduced in “Interpretation by the OWA operator”). In addition, next proof 

shows that when considering “Q B X are A” statements and when B is normalized, this 

defuzzication leads to the GD method introduced in “The GD method for “Q B X are A” 

statements” (when B is not normalized, the two methods differs since GD method imposes to 

normalize B, while the gradual truth value associates a value 0 when the α-cuts of B(X) is not 

defined).  

Proof. In case of a “Q B X are A” statement, the discontinuity points (αi, μS(αi))  of the 

gradual truth value are associated to αi values where the quantities μS(αi) vary. In other 

words: 

• αi values are coming from the set D ={μA∩B(x) where x is in X}∪ {μB(x) where 

x is in X}, 

• μS(αi)  = μQ(|(A∩B)(X)αi| /|B(X)αi|).   
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The defuzzication gives :  

δ = (α1 – 0) * μQ(|(A∩B)(X)α1| /|B(X)α1|) + (α2 – α1) * μQ(|(A∩B)(X)α2| /|B(X)α2|) 

+...+ (αn – αn-1) * μS(1),    

where the values from D are denoted α1 < α2 < ... < αn.  This expression is clearly that of an 

interpretation using the GD method (cf. 3.2.4). 

                                           

A qualitative approach 

According to this defuzzification, the scalar interpretation takes into consideration two 

aspects: 

• a garanteed (minimal) satisfaction value β associated to the α-cuts (β must be higher 

as possible), 

• the repartition of β among the α-cuts (β should be attained by the most possible α-

cuts). 

 

Obviously, these two aspects are in opposition since, in general, the higher β, the 

smaller the repartition. The scalar interpretation δ reflects a compromise between these two 

aspects and we get:  

δ = max β  in [0,1] min(β, each(β)),                                                                                        

where each(β) means "for each level α, μS(α) ≥ β".  
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A definition of each(β) delivering a degree is the more convenient (Bosc & Liétard, 

2005) and we propose to sum the lengths of intervals (of levels) where the threshold β is 

reached: 

∑
 ≥ ∈∀

−=

β)(μ  ],α,]α α
 that ] suchα,]α

ij

Sji

ji

.)()(each

α

ααβ         

The higher each(β), the more numerous the levels α for which μS(α) ≥ β. In particular, 

each(β) equals 1 means that for each level α, μS(α) is larger than (or equal to) β.  

 

In addition, from a computational point of view, the definition of δ needs to handle an 

infinity of values β. However, it is possible (Bosc & Liétard, 2005) to restrict computations to 

β values belonging to the set of “effective” μS(α) values: 

 

δ = max {β| ∃ α such that β = μS(α)} min(β, each(β)), 

 

Example. We consider the statement “about half  B X are A” and the fuzzy truth value given 

by figure 9. The values β to be considered are 1/3 and 1. Furthermore: 

each(1/3) = 0.5, 

each(1) = 0.1. 
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We get δ = max (min(1/3, 0.5), min(1, 0.1)) = 1/3. As in the previous example, a low result 

for “about half B  X are A” is coherent. ♦ 

 

It has been shown (Bosc & Liétard, 2005), when dealing with quantified statements of type 

“Q X are A” (Q increasing), this defuzzification leads to the Sugeno fuzzy integral based 

approach introduced in section “the probabilistic approach (GD method)”. 

 

 Satisfaction of properties 

This section situates the results provided by these two defuzzifications with respect to 

the properties introduced in “about the proposed approaches to evaluate quantified 

statements”. All the properties are satisfied, except property 7 which holds only when the set 

made of element from X which satisfy B is normalized. 

We recall that the quantitative approach delivers : 

δ = (α1 – 0) * μS(α1) + (α2 – α1) * μS(α2) +...+ (1 – αn) * μS(1),   
                                      
while the qualitative approach delivers : 

 
δ = max {β| ∃ α such that β = μS(α)} min(β, each(β)), 
 

where each(β) is defined by : 

∑
 ≥ ∈∀

−=

β)(μ  ],α,]α α
 that ] suchα,]α

ij

Sji

ji

.)()(each

α

ααβ         
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and the discontinuity points of the gradual truth value are: (α1, μS(α1)),..., (αn, μS(αn)) with α1 
< α2 < ... < αn.  
 
We first demonstrate the validity of properties related to “Q X are A” statements, then that of 
properties related to “Q B X are A” statements. 
 

Properties related to “Q X are A” statements  

In case of a “ Q X are A “ statement, the αi are coming from the set D = {μA(x) where 

x is in X} and  μS(αi) = μQ(|A(X)αi|) (or μQ(|A(X)αi|/n)  in case of a relative quantifier with n 

the cardinality of set X). The different properties to be satisfied are : 

 

Property 1. If predicate A is crisp, the evaluation must deliver μQ(|A(X)|) in case of absolute 

quantifier and μQ(|A(X)|/n) in case of a relative quantifier (where A(X) is the crisp set made of 

element from X which satisfy A and n is the cardinality of crisp set X). 

 

Proof. When A is crisp, D is a singleton ({1}) and the only discontinuity point of the gradual 

truth value (cf. figure 11) is (1, μQ(|A(X)|) (or (1,μQ(|A(X)|/n)).  
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Figure 11. The gradual truth value associated to property 1. 
 

The quantitative approach delivers : (1 – 0) * μQ(|A(X)|) (or (1-0) * μQ(|A(X)|/n) when 

Q is relative) and property 1 holds. Concerning the qualitative approach, we demonstrate the 

validity of property 1 only the case of an absolute quantifier. In case of a relative quantifier it 

is necessary to change each expression μQ(|A(X)|) into μQ(|A(X)|/n) and the demonstration 

remains valid.  

When dealing with the qualitative approach, there is only one value β to be 

considered. This value equals μQ(|A(X)|) and each(β) = 1 (since for every level α in [0,1] 

μS(α) = μQ(|A(X)α|) = μQ(|A(X)|) = β). As a consequence the result of the qualitative 

approach is min(β, each(β)) = min(μQ(|A(X)|), 1) and the property is valid.  

 

μQ(|A(X)|) 
μS(α) 

0                                                                      1       α 
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Property 2. The evaluation is coherent with the universal and existential quantifiers. It means 

the evaluation of “Q X are A”  is )x(A
Xx

μ
∈
∨ when Q is  ∃ and )(xAXx

μ
∈
∧ when Q is ∀ ( ∨  and 

∧  being respectively a conorm and a norm). 

Proof. The universal quantifier is relative and defined by μ∀(1) = 1 and for any k in [0,1[, μ∀ 

(k) = 0. The gradual truth value is defined by: 

• μS(α) = μ∀(|A(X)α|/n)  = 1 when |A(X)α|/n = 1 which means when α is smaller than 
the minimum of membership degrees (denoted α1). This value α1 can be equal to 0 
(when there exists at least one element x with  μA(x) = 0). 

• μS(α) = 0 otherwise.  
 

As a consequence, we obtain the gradual truth value given by figure 12. 

Figure 12. The gradual truth value associated to the universal quantifier. 

 

μS(α) 

1 

0                      α1                                                      1       α 
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The fuzzy truth value has a unique discontinuity point (α1, 1) and the quantitative 

approach delivers δ = (α1 – 0) * 1 = α1 which is the minimum of the membership degrees. 

Property 2 is then satisfied using the minimum as a norm. When dealing with the qualitative 

approach, there is only one value β to be considered. This value equals β = 1 with each(β) = 

α1 . As a consequence the result is min(β, each(β))  = α1 and the property is valid.  

The existential quantifier is absolute and defined by μ∃(0) = 0  and for any k ≠ 0, μ∃(k) 

= 1.  The discontinuity points of the gradual truth value are: (α1, 1), ..., (αn, 1) (see figure 13), 

where αn is the highest degree among the μA(x)s.  

Figure 13. The gradual truth value corresponding to the existential quantifier. 

 

The quantitative approach delivers : δ = (α1 – 0) * 1 + (α2 – α1) * 1 +...+ (αn - αn-1 ) 

* 1 + (1 – αn) * 0 =  αn which is the maximum of the membership degrees. Property 2 is then 

μS(α) 

1 

0                                           αn                       1       α 
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satisfied using the maximum as a conorm. When dealing with the qualitative approach, there 

is only one value β to be considered. This value equals β = 1 with each(β) = αn . As a 

consequence the result is min(β, each(β))  = αn and the property is valid.  

 

Property 3. The evaluation is coherent with quantifiers inclusion. Given two quantifiers Q and 

Q’ such that Q ⊆ Q’ (∀x, μQ(x) ≤ μQ’(x)), the evaluation of “Q X are A” cannot be larger then 

that of “Q’ X are A”. 

  

Proof. The gradual truth value for “Q X are A” is denoted S, while that associated to “Q’ X are 

A” is denoted S’. Since we have : ∀x, μQ(x) ≤ μQ’(x), it implies ∀ α in [0, 1] , μS(α) ≤ μS’(α)  

(since the two quantified statements are dealing with the same set X and the same fuzzy 

predicate A).  

 

 We denote δ and δ’ the respective evaluation of “Q X are A” and “Q’ X are A”. If the 

quantitative approach is chosen, we have δ  = ∫
1

0 S d)(μ αα  and  δ'  = ∫
1

0
'S d)(μ αα . As a 

consequence, δ ≤ δ’ and property 3 is valid.  

If the qualitative approach is chosen : 
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δ = max β in [0,1] min(β, each(β)), with ∑
 ≥ ∈∀

−=

β)(μ  ],α,]α α
 that ] suchα,]α

ij

Sji

ji
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ααβ        

δ'= max β in [0,1] min(β, each’(β)),with ∑
 ≥ ∈∀

−=
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Since ∀ α in [0, 1] , μS(α) ≤ μS’(α), we have each(β)≤ each’(β) which gives δ ≤ δ’ 

and property 3 is demonstrated.  

Properties related to “Q B X are A” statements  

In case of a “Q B X are A” statement, the discontinuity points (αi, μS(αi))  of the 

gradual truth value are associated to αi values where the quantities μS(αi) varies. In other 

words : 

• αi values are coming from the set D ={μA∩B(x) where x is in X}∪ {μB(x) where 

x is in X}, 

• μS(αi)  = μQ(|(A∩B)(X)αi| /|B(X)αi|).    

The different properties to be satisfied are: 
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Property 4. If A and B are crisp and Q is relative, the evaluation must deliver μQ(|A(X) ∩ 

B(X)|/|B(X)|) where A(X) (resp. B(X)) is the set made of elements from X which satisfy A 

(resp. B).  

 

Proof. When A and B are is crisp, D is a singleton ({1}) and the only discontinuity point of the 

gradual truth value is (1, μQ(|(A∩B)(X)| /|B(X)|)) where (A∩B)(X) and B(X) are crisp sets (see 

figure 14).  

Figure 14. The gradual truth value associated to property 4. 

 

The quantitative approach delivers : (1 – 0) * μQ(|(A∩B)(X)| /|B(X)|) and property 1 

holds.  

When dealing with the qualitative approach, there is only one value β to be 

considered. This value β equals μQ(|(A∩B)(X)| /|B(X)|) and each(β) = 1. As a consequence 

μQ(|A∩B(X)| /|B(X)|) μS(α) 

0                                                                      1       α 
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the result of the qualitative approach is min(β, each(β))  = min(μQ(|(A∩B)(X)| /|B(X)|), 1) and 

the property is valid.  

 

Property 5. When B is a Boolean predicate, the evaluation of “Q B X are A” is similar to that 

of “Q B(X) are A” where B(X) is the (crisp) set made of elements from X which satisfy B. 

 

Proof. This proof shows that the gradual truth value S associated to “Q B X are A” and the 

gradual truth value S’ associated to  “Q B(X) are A” are exactly the same : ∀ α in [0,1], μS(α) 

= μS’(α). 

When B is a Boolean predicate B(X)α  is the crisp set B(X) for any level α. As a 

consequence, μS(α)  = μQ(|(A∩B)(X)α| /|B(X)|).  Since (A∩B)(X)α can be rewritten 

A(X)α∩B(X) we have : 

μS(α)  =  μQ(A(X)α∩B(X)/|B(X)|).   

It means that μS(α) is restricted to elements belonging to B(X) as it is the case for “Q B(X) are 

A” statement and we obviously get : ∀α in [0,1], μS(α) = μS’(α).  

 

Property 6. If the set of elements which are B is included in the set of A elements, Q is relative 

and B is normalized, then the evaluation of “Q B X are A” is μQ(1)  (since 100% of B elements 

are A due to the inclusion). 
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Proof. When the set of elements which are B is included in the set of A elements, we have 

μB(x) ≤ μA(x) for any element x from X. As a consequence, B(X)α ⊆ A(X)α for any level α. As 

a consequence, ∀α in [0,max x∈X μB(x)], μS(α) = μQ(1).  Since B(X) is normalized,  ∀α in 

[0,1], μS(α) = μQ(1) and it is obvious to show that the two defuzzifications give μQ(1) as final 

results. 

 

Property 7. If A(X) ∩ B(X) = ∅ (where A(X) (resp. B(X)) is the set made of elements from X 

which satisfy A (resp. B)), then the evaluation must return the value μQ(0).  

 

We show this property holds only when B(X) is normalized. 

 

 

Proof. When A(X) ∩ B(X) = ∅, we have A∩B(X)α = ∅ for any level α in [0,1]. As a 

consequence, ∀α in [0,max x∈X μB(x)], μS(α) = μQ(0).  When B(X) is normalized fuzzy set, we 

get ∀α in [0,1], μS(α) = μQ(0) and it is obvious to show that the two defuzzifications give 

μQ(0) as final results. 
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CONCLUSION 

This paper takes place at the crossword of quantified statements evaluation and fuzzy 

arithmetic introduced in (Rocacher & Bosc, 2003a, 2003b, 2003c, 2005). It shows that fuzzy 

arithmetic allows to evaluate quantified statements of type “Q X are A” and “Q B X are A”.  

The evaluation can be either a fuzzy truth value or a scalar value obtained by the 

defuzzification of the fuzzy value. Two types of scalar values can be distinguished: the first 

one corresponds to a quantitative view of the fuzzy value, the second one of a qualitative 

view.  

When dealing with quantified statements of type “Q X are A”, the two scalar values 

are respectively generalizations of the OWA based interpretation and the Sugeno integral 

based interpretation. When dealing with “Q B X are A” statements, our approach presents the 

advantage of  providing a theoretical framework for computation. It is the first attempt to set 

this evaluation in the framework of an extended arithmetic and algebra.  

This aspect is very important since properties provided by the algebraic framework 

hold and we expect to obtain more interesting properties for the qualitative and quantitative 

approaches (in addition to the ones already stated in this paper). As a consequence, further 

studies may concern the comparison of the qualitative and quantitative approach in terms of 

properties. In addition, since they are both summaries of the same evaluation (in the form of a 

gradual number), they should not differ significantly.  
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Key terms and their definition : 

Fuzzy predicate : Predicate defined by a fuzzy set. A fuzzy predicate delivers a degree of 

satisfaction. 

Gradual integer : Integer which takes the form of a fuzzy subset of the set of naturals 

(interpreted as a conjunction). Such integers differ from fuzzy numbers which are 

interpreted as disjunctions of candidates. 

Gradual relative integer : Gradual number represented by a fuzzy subset of the set of relatives. 

(interpreted as a conjunction). It is defined as the substraction of two gradual integers. 

Gradual relational number : Gradual number interpreted as a conjunction and defined as the 

ratio of two relative integers. 

Linguistic quantifiers : Quantifiers defined by linguistic expressions  like “around 5” or “most 

of”. Such quantifiers allow an intermediate attitude between the conjunction 

(expressed by the universal quantifier ∀) and the disjunction (expressed by the 

existential quantifier ∃).  
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OWA operator : Ordered Weighted Average Operator. The inputs are assumed to be sorted 

and the weights of this average are associated to input data depending on their rank 

(weight w1 is associated to the largest input, weight w2 is associated to the second 

largest input,…). 

Sugeno fuzzy integral : Aggregate operator which can be viewed as a compromise between 

two aspects : i) a certain quantity (a fuzzy measure) and ii) a quality of information (a 

fuzzy set). 

 

 

 


