
Query Rewriting Based on User’s Profile Knowledge

Dimitre Kostadinov Mokrane Bouzeghoub Stéphane Lopes

Laboratoire PRiSM - Université de Versailles
45, avenue des Etats-Unis

78035, Versailles cedex, France
{firstname.lastname}@prism.uvsq.fr

ABSTRACT
Query personalization was introduced as an advanced

mechanism to allow the reformulation of database

queries and adapt them to the user's domain of inter-

est and preferences. Domain of interest and prefer-

ences are captured into a profile which is explicitly

defined by the user or derived from his or her logged

interactions with the information system. A substan-

tial effort was done in recent years to provide refor-

mulation techniques which enrich user queries prior

to their execution. These approaches are often limited

to a single data source. However, query personaliza-

tion is much more crucial in a context where data

sources are numerous and distributed, i.e. a mediation

or P2P systems, as the user is generally overloaded

with massive results in response to his or her queries.

To deal with such a context of distributed data

sources, we have studied two naive approaches and

proposed an advanced approach, based on a schema-

free profile. A comparison of the three approaches is

performed, through two metrics we have defined. The

limitations of the two first approaches are shown and

the improvements provided by the third approach are

demonstrated through the experiment.

Key words: data access personalization, user
profile, query reformulation, query rewriting

1. INTRODUCTION
The access to relevant information, adapted to the

preferences and the context of the user is a challenge

in modern information systems, in particular when

data is massively distributed and potentially redun-

dant. Generally, querying databases with conven-

tional DBMSs leads to an informational overload

which makes the user unable to distinguish relevant

information from secondary one or even from the

noise. Besides, another drawback of these systems is

their incapacity to discriminate between users accord-

ing to their domains of interest, their preferences or

their querying contexts, and to deliver them relevant

results according to their respective profiles. These

limits can easily be observed in distributed databases,

P2P and mediation systems which, for a given query,

deliver the same massive and redundant results, re-

gardless of the user who issued this query and of the

context in which it was issued.

Access models of conventional database systems are

conceived for a standard use, with a closed world as-

sumption, where the user knows not only the database

schema but also the exact information he wants: his

queries are exact expressions of his needs. Distributed

and data integration systems generalized this ap-

proach to multiple data sources, without considering

their specificity such as evolution of data sources,

their temporary or permanent unavailability, the rela-

tive quality of their redundant data, etc. Whatever the

system architecture is, queries are treated similarly

for all users and the returned results are considered

fully precise (i.e. they exactly match the query condi-

tions) and complete (i.e. considering closed world

assumption).

However, these access models do not satisfy a wide

spectrum of users who have new requirements such as

taking into account their geographical location, the

media used for the expression of their queries, their

preferences in terms of data quality, data presenta-

tion, data security and so on. Additionally, with the

multiplicity of connected databases, in particular in

large scaled P2P architectures, users do not generally

specify an exact need but an intention which must be

refined and interpreted according to the targeted data

sources. Then, new access practices have emerged,

pushing database systems to behave closer to infor-

mation retrieval systems.

In this perspective, several new access models have

been proposed: approximate queries [6], ranked que-

ries [19], preference queries [17], context aware que-

ries [11] and so on; all of them aiming, at some ex-

tent, to provide the user with more and more relevant

data. Most of these works are based on query lan-

guages extension, as in PreferenceSQL [13] or SQL/f

[2]. These models are interesting steps toward an

adaptive access model; however they always force

users to completely specify their queries, ignoring

invariant elements which constitute their own speci-

ficity. Clearly, there is no distinction between a user

profile and a user query.

The concept of user profile has been introduced in

many works in the database field, with various goals

such as pre-selection of data sources [20], delivery of

data with more or less freshness [4], or reformulation

of queries using user profiles prior to their execution

[16]. The first approach addressed data source selec-

tion according to their quality measures which should

match as much as possible to the requirements given

in the user profile. The second approach explored the

capacity of a distributed system, based on the content

of its memory cache, to deliver data using a user pref-

erence between query response time and data fresh-

ness. The third approach exploited preferences given

in the user profile, as weighted predicates, to enrich

user queries during their compilation. Applied during

design time [20], compile time [16][25] or execution

time [4], these approaches constitute a step forward in

a profile-based access to databases, and as such con-

stitute a good background to a general personalized

access model.

Data personalization has also been addressed in other

domains such as information retrieval and human-

computer interaction. In information retrieval systems

[22], the user is fully involved in the query evaluation

which is conducted as a stepwise refinement process

where the user can decide at each step which data he

likes and which data he dislikes. The personalization

is then considered as a machine learning process

based on user feedback. In human-computer interac-

tion [8], user profiles generally define user expertise

with respect to the application domain in order to pro-

vide them with appropriate interfaces and dialogs.

Data delivery modalities, graphical metaphors and

level of expertise of the dialog constitute the main

personalization issues in this context.

The work presented in this paper follows the line of

this state of the art, in particular the query reformula-

tion approach using user profiles. But in contrast to

previous work, our approach applies to the context of

data integration systems, e.g. a mediation system. In-

deed, we consider the problem of query personaliza-

tion as more crucial in large scaled distributed sys-

tems, where users have generally fewer knowledge on

data source descriptions, than in a single database

system. The multiplicity of data sources, possibly re-

dundant or replicated, their relative quality with re-

spect to user needs and the information overload re-

turned by corresponding access models, constitute

strong obstacles to the delivery of relevant data

adapted to the preferences of each user. In this con-

text, the primary goal of a personalized access model

(PAM) is to identify relevant data sources and to re-

formulate user queries over these data sources. Query

reformulation consists in reinterpreting the user inten-

tion, expressed in his initial query, in a more com-

plete query, considering at the same time the user pro-

file and the descriptions of the data sources. Query

reformulation aggregates two complementary tasks:

query rewriting which determines relevant data

sources and query enrichment which integrates the

user profile.

Our general requirements for a PAM to a set of inte-

grated data sources are the followings:

- We make a clear distinction between user profiles

and user queries: a profile is a user model which

specifies the user domain of interest and the most

general preferences which distinguish this user

from the others, while a query is an on-demand

user need which is evaluated with respect to a cer-

tain profile. All queries issued by the same user

are evaluated with respect to his specific profile.

The same query issued by different users may re-

turn different results as it is evaluated using dif-

ferent profiles.

- A profile is defined by a set of attributes, possibly
organized into multidimensional entities [3],

whose values can be user-defined or dynamically

derived from user behavior. The user profile is

schema-free, it does not depend on any database

schema as it is supposed to characterize the user

domain of interest and preferences.

- The goal of a PAM is to obtain as much as rele-
vant results for the user. In the context of database

systems, this turns into augmenting user queries

with more restrictive predicates. As a conse-

quence, personalized queries obtain, generally, a

restricted number of results compared to non per-

sonalized queries.

We limit our scope to relational data sources and con-

sider their semantic links with the global schema

through the Local As View (LAV) approach which is

best adapted to a rapid evolution of data sources. In

this context, we assume having the necessary meta-

data defining the global schema as well as the data

sources.

On the basis of two known algorithms, carrying out

respectively query rewriting [9] and query enrichment

[15], we propose three query reformulation tech-

niques. Two of them are simple compositions of the

previously mentioned algorithms, while the third one

is a new query rewriting algorithm driven by the user

profile.

The three approaches are compared using two met-

rics, coverage and precision, adapted from measure-

ments commonly used in information retrieval sys-

tems. Our experiment shows that the third approach is

well suited to both the selection of the best data

sources and to the use of the best part of the user pro-

file. Thus, this approach constitutes a good basis for a

new PAM to any distributed set of data sources

whose access is based on query rewriting.

Section 2 presents some background definitions on an

example which will be used along the paper as a basis

to illustrate our approach. Principles of query rewrit-

ing and query enrichment are also explained in this

section. Section 3 describes intuitively two naive re-

formulation approaches combining these techniques,

as well as our advanced approach. Two evaluation

metrics are introduced in section 4. Section 5 details

our profile-based query rewriting approach and pre-

sents the experiments. Section 6 concludes the article

with further research.

2. BACKGROUND AND EXAMPLE
As mentioned before, query rewriting and query en-

richment are fundamental techniques to respectively

select data sources and improve user queries prior to

their execution. This section will recall the principles

of two algorithms we have chosen as a basement for

our work, namely the rewriting algorithm of [9] and

the enrichment algorithm of [15]. Before, we give a

simple example of a data integration system which

will serve to illustrate motivations and principles of

these algorithms as well as our approach.

2.1 Motivating Example
Our data integration system deals with travels, trans-

ports and hotels that a user can book for his trips. The

virtual schema of this system is composed of the rela-

tions presented in Example 1. Primary keys are under-

lined and foreign keys are in italic.

Example 1: Virtual schema (Sv)

TRAVEL(vid,price,departure,arrival,nbDays,departDate,

 departTime, visitType, tripType, tid, hid)

TRANSPORT(tid, mean, wayType, comfort)

HOTEL(hid, nbStars, name, region, city, restaurant)

The instances of this schema are computed using six

data sources: WORLDHOTELS (information about ho-

tels), PLANETRANSPORT (flights information), SNCF

(travels by French trains), RIDEEVERYWHERE (travel

with different transport means), PROMOHOLYDAYS

(promotional travels from Paris) and LYONHOLY-

DAYS (travels from Lyon). Each data source is de-

scribed by a LAV mediation query expressed in a

Datalog-like language (Example 2).

The left side of each definition, called head, corre-

sponds to the source schema and the right side con-

tains one atom for each mediation relation which is

used for the source definition, plus possibly selection

predicates over these relations. To clarify the presen-

tation, the atoms in the right side of a user query will

be called subgoals. The variables of the head are

called distinguished variables and all other variables

are existential variables. We assume that selection

predicates are of the form <var θ val> where var is a
variable which appears in some atom, θ is an arithme-
tic operator and val is a constant from the domain of

var.

Example 2 Data source definitions

S1:WORLDHOTELS(hid,nbStars,name,region,city,restaurant) :–

 HOTEL(hid, nbStars, name, region, city, restaurant).

S2:PLANETRANSPORT(tid,departure,arrival,departDate,departTime,

 mean, wayType, comfort) :–

 TRANSPORT(tid, mean, wayType, comfort),

 TRAVEL(vid, price,departure, arrival, nbDays, departDate,

 departTime, visitType, tripType, tid, hid),

 mean = ‘plane’.

S3:SNCF(tid,departure,arrival, departDate, departTime,

 mean, wayType, comfort) :–

 TRANSPORT(tid, mean, wayType, comfort),

 TRAVEL(vid, price, departure, arrival, nbDays, departDate,

 departTime, visitType, tripType, tid, hid),

 mean=‘train’.

S4:RIDEEVERYWHERE(tid, departure, arrival, departDate,

 departTime, mean, wayType, comfort) :–

 TRANSPORT(tid, mean, wayType, comfort),

 TRAVEL(vid, price, departure, arrival, nbDays, departDate,

 departTime, visitType, tripType, tid, hid).

S5:PROMOHOLYDAYS(vid, price, departure, arrival, nbDays, depart

 Date, departTime, visitType, tripType,

 mean, name, nbStars, restaurant, tid) :–

 TRANSPORT(tid, mean, wayType, comfort),

 TRAVEL(vid, price, departure, arrival, nbDays, departDate,

 departTime, visitType, tripType, tid, hid),

 HOTEL(hid, nbStars, name, region, arrival, restaurant),

 price<950, departure='Paris‘.

S6:LYONHOLYDAYS(vid,price,departure,arrival,nbDays,departDate,

 departTime, visitType, tripType, mean,name,

 nbStars, restaurant, tid, hid) :–

 TRANSPORT(tid, mean, wayType, comfort),

 TRAVEL(vid, price, departure, arrival, nbDays, departDate,

 departTime, visitType, tripType, tid, hid),

 HOTEL(hid, nbStars, name, region, arrival, restaurant),

 price<950, departure='Lyon‘.

As an example of user preferences, consider a travel-

ler who likes holydays of more than 7 days and usu-

ally takes comfortable direct flights from Toulouse or

in the worst case from Paris and prefers circuit trips

with at least 3 stars hotels situated in the city centre.

We will see later in the following sections how this

profile can be represented and used depending on the

reformulation approaches. Finally, as an example of a

user query, we consider the one which searches for 4

days trips in Madrid (Example 3).

Example 3: Initial query (Qu)

SELECT V.vid, V.price, V.departure, T.mean, T.comfort

FROM TRAVEL V, TRANSPORT T

WHERE V.tid=T.tid AND V.arrival='Madrid'

 AND V.nbDays=4;

This example will be used along the paper to illus-

trate base algorithms as well as our reformulation ap-

proaches.

2.2 Query Rewriting
The query rewriting process consists in transforming

the user query expressed on the virtual schema so that

it can be evaluated on the data sources. It aims to de-

termine contributive data sources for query execution

and to use their definitions to reformulate the query

[5]. This section presents the query rewriting process

in a LAV context. There are two main classes of re-

writing algorithms: inverse-rules-based algorithms [7]

and bucket-based algorithms [18].

The inverse-rules algorithm [7] [21] constructs a set

of rules which invert the source definitions. For each

source definition, a rule is created for each of its at-

oms. This rule specifies how to compute tuples for

the virtual relation, represented by the atom, from

tuples of the source. The rewritings of a query are

then constructed by expanding the query with all pos-

sible combinations of inverse rules.

According to [9], the rewritings produced by the in-

verse-rules algorithm described in [7], are not appro-

priate for query evaluation for two reasons. First, ap-

plying the inverse rules to the extension of a source

definition may invert some of the useful operations

done to produce the source data. Second, irrelevant

sources can be accessed in order to compute the query

results.

The bucket-based algorithm proceeds in two steps

[18]: (i) create a bucket for each subgoal of the query

which contains source definitions which are relevant

to answering the particular subgoal and (ii) construct

the candidate rewritings by keeping only rewritings

contained in the query. A query Q is contained in an-

other query Q’ if for any database D, the set of tuples

returned by the evaluation of Q over D is a subset of

the tuples returned by the execution of Q’ over D.

Each candidate rewriting is a conjunctive query ob-

tained by taking one element from each bucket.

The main problem with this algorithm is that it con-

siders each atom of the source definition in isolation

when it looks for relevant sources. Doing so leads to

the missing of some important interactions between

the atoms in the source definitions [9]. In particular, it

misses the fact that if a source will be used to rewrite

some query subgoal, then there might be other query

subgoals which have to be covered by the same

source. This fact is due to join variables in the query,

which cannot be covered using other source defini-

tions. These problems are solved by the MiniCon al-

gorithm [9] which takes into account the interactions

between the variables in the subgoals of the query in

order to find relevant data sources.

The first step of the MiniCon algorithm begins by

searching for correspondences between the subgoals

of the query and the atoms of the source definitions.

Once it finds a correspondence between a subgoal g

of the query Q and an atom g’ of a source Si, the algo-

rithm considers the join predicates of Q in order to

find the minimal subset of subgoals in Q which have

to be mapped to atoms in Si given that g will be

mapped to g’. In other words, the algorithm checks

that each join predicate in the mapped subgoals of the

query is either satisfied by the source definition or is

expressed on distinguished variables in the source

definitions. In the latter case, the join can be proc-

essed with other sources. We say that an atom g’ cov-

ers a query subgoal g if g is mapped to g’. The map-

ping information between a query and a source defini-

tion is called a MiniCon Descriptor (MCD). A MCD

contains information about mappings, denoted by ϕ,
between variables in Q and variables in Si as well as

the subgoals in Q which are covered by atoms in Si.

When computing the MCDs, the algorithm verifies

that (i) distinguished variables in the query are

mapped into distinguished variables in the sources,

(ii) for each mapping, there are not conflicting predi-

cates between the query and the sources and (iii) each

query predicate involving the mapping can be rewrit-

ten. Two predicates are conflicting if they cannot be

satisfied simultaneously (for example « price<10 »

and « price>15 »). A query predicate can be rewritten

with respect to a given source (MCD) if it is either

contained in this source definition or if there exists a

distinguished variable on which this predicate can be

expressed.

The second step of the MiniCon algorithm consists in

combining the MCDs in order to compute the candi-

date rewritings. The MCDs generated by the MiniCon

algorithm can be combined without checking whether

the join predicates in the query can be satisfied or not

by the sources. In order to form a candidate rewriting,

a set of MCDs must satisfy the following conditions:

(i) they are not redundant, (ii) they do not contain

conflicting predicates expressed on variables mapped

to the same query variable and (iii) they cover all

query subgoals.

The MCDs which can be generated for the query Qu

from Example 3 and the source definitions in

Example 2 are presented in Table 1.

The source WORLDHOTELS does not contain any

atom which can be mapped to a subgoal in Qu, so no

MCD is created for this source. For each source con-

taining information about transport (PLANETRANS-

PORT, SNCF and RIDEEVERYWHERE), one MCD can

be created which covers the query subgoal TRANS-

PORT. Finally the last two sources (PROMOHOLY-

DAYS and LYONHOLYDAYS) can cover the first query

subgoal (TRAVEL). Consequently, the rewriting ex-

pression of Qu is a union of six candidate rewritings

resulting from the combination of the generated

MCDs. Example 4 presents the candidate rewriting

obtained from the MCDs of the source SNCF and

PROMOHOLYDAYS.

Table 1. MCDs for Qu

SOURCE MAPPINGS SUB-

GOALS

PLANE

TRANSPORT

tid→tid, mean→mean, wayType →

wayType,comfort→comfort
2

SNCF
tid→tid, mean→mean, wayType →

wayType, comfort→comfort
2

RIDEEVERY

WHERE

tid→tid, mean→mean, wayType

→wayType, comfort→comfort
2

PROMOHOLY

DAYS

vid→vid,price→price, departure

→ departure, arrival →arrival,

nbDays→nbDays, departDate →

departDate, depart-

Time→departTime, visitType →

visitType, tripType → tripType,

tid→tid, hid→hid

1

LYONHOLY

DAYS

vid→vid, price→price, depar-

ture → departure, arri-

val→arrival, nbDays → nbDays,

departDate → departDate, de-

partTime→departTime, visitType

→ visitType, tripType → trip-

Type, tid→tid, hid→hid

1

Example 4: A candidate rewriting of Qu

RW(Qu)(vid, price, departure, mean, comfort):-

SNCF(tid, departure, arrival, departDate,

 departTime, mean, wayType, comfort),

PROMOHOLYDAYS(vid, price, departure, arrival, nbDays,

 departDate, departTime, visitType,

 tripType, mean, name, nbStars,

 restaurant, tid),

 arrival=’Madrid’,nbDays=4.

2.3 Query Enrichment
Query enrichment is a process which exploits the user

profile to enhance expressiveness of his query by in-

tegrating specific knowledge collected in his profile.

This technique, commonly used in information re-

trieval systems, is very recent in the database domain.

An interesting method defined recently is the one of

Koutrika and Ioannidis [15][16]. To some extent, this

method appears as very close to the view mechanism.

Indeed, the user profile is defined as a list of disjunc-

tive predicates, including selections and joins. Predi-

cates are associated with weights, ranging within

[0,1] interval and representing their relative impor-

tance with respect to the user preferences. Among this

ordered set of predicates, the user can also specify

another type of preference: the number of predicates

he wants to be taken into account in the enrichment

process. Given such a profile, the query enrichment

process consists in reformulating the initial user

query by adding predicates from this profile. To go

further and to emphasise the specificity of the ap-

proach, we illustrate the process by an example.

In [15], the user profile may contain both selection

predicates and join predicates. Each predicate is char-

acterized by a weight, ranging from 0 to 1, which de-

fines its relative importance with respect to other

predicates of the profile. Predicates are ordered ac-

cording to their decreasing weights. In the context of

the database schema of Example 1, the informal pref-

erences of the traveller of section 2.1 lead to the pro-

file given in Example 5. The query enrichment is

processed in two steps: (i) relevant predicates selec-

tion and (ii) integration of the relevant predicates to

the query.

Example 5: User Profile as defined in [15] (Pk)

{ TRAVEL.tid = TRANSPORT.tid 1.0 (a)

 TRAVEL.hid = HOTEL.hid 1.0 (b)

 TRAVEL.nbDays > 7 1.0 (c)

 TRAVEL.departure = ‘Toulouse’ 0.8 (d)

 TRANSPORT.mean = ‘plane’ 0.7 (e)

 TRANSPORT.wayType = ‘direct’ 0.6 (f)

 HOTEL.nbStars > 3 0.5 (g)

 TRAVEL.tripType <>‘circuit’ 0.5 (h)

 TRANSPORT.comfort > 2 0.4 (i)

 TRAVEL.departure = ‘Paris’ 0.3 (j)

 HOTEL.region = ‘centre city’ 0.2 (k) }

Relevant predicates are those related to the query and

not conflicting with it. A profile predicate is related

to a query if it is expressed on a relation of the query

or if there is a join path between one query relation

and the relation on which the predicate is expressed.

Only join predicates from the user profile are used to

find the join paths. For example the predicate (g)

(« HOTEL.nbStars > 3 ») from Pk can be related to Qu

using the join predicate (b) (« TRAVEL.hid = HO-

TEL.hid »). In this case, if (g) is used to enrich Qu, the

virtual relation HOTEL is also added to Qu. A profile

predicate is conflicting with a given query if its con-

junction with this query leads to empty results. For

example the predicate « TRAVEL.nbDays > 7 » is con-

flicting with Qu because Qu contains the predicate

« nbDays = 4 » and both predicates cannot be satis-

fied simultaneously.

The second step of the query enrichment process is

the integration of relevant predicates to the initial

query. This is done using three preference parameters

given by the user: (i) the number K of high weighted

predicates taken from the user profile, (ii) M which is

the number of predicates among the K predicates se-

lected above which are mandatory and (iii) the num-

ber of the remaining (K-M) predicates which at least

must be satisfied by each result.

The second step of the query enrichment process can

be summarized with the following steps: (i) make all

mandatory predicates as one conjunctive clause, (ii)

make a conjunctive clause with each combination of

L predicates among the remaining (K-M), (iii) make a

disjunctive clause of all these combinations, and fi-

nally (iv) add these new clauses as conjunctive sub

queries to the initial user query.

Consider the initial query Qu in Example 3, the user

profile Pk in Example 5 and set parameters K=6, M=3

and L=2. In the first step, the 6 predicates with the

highest weights not conflicting with Qu are selected;

this excludes the predicate (c). Among the selected

predicates {d, e, f, g, h, i}, the first 3 (d, e and f) are

considered mandatory and are added to Qu as well as

the disjunction of the conjunctions of 2 predicates

among the remaining ones (g, h and i). The resulting

query enrichment Qu+ is shown in Example 6. Notice

that the predicate (g) is expressed on the virtual rela-

tion HOTEL which is not present in the initial query.

This relation is added using the join predicate (b)

which relates it to the relation TRAVEL of the initial

query.

Example 6: Enrichment of the initial query (Qu+)

SELECT V.vid, V.price, V.departure, T.mean, T.comfort

FROM TRAVEL V, TRANSPORT T, HOTEL H

WHERE V.tid=T.tid AND V.arrival='Madrid'

 AND V.nbDays=4

 AND V.hid=H.hid AND V.departure='Toulouse'

 AND T.mean='plane' AND T.wayType='direct'

 AND ((H.nbStars>3 AND V.tripType<>'circuit')

 OR (H.nbStars>3 AND T.comfort>2)

 OR(V.tripType<>'circuit' AND T.comfort>2))

The algorithms of query rewriting and query enrich-

ment can be combined to achieve a personalized ac-

cess to a multi-source data integration system. To this

end, the next section presents three approaches of

query reformulation: two naive ones which consist in

composing in different orders the rewriting and en-

richment algorithms; the third approach which is a

new reformulation approach we defined over the re-

writing algorithm using the user profile.

3. QUERY REFORMULATION: AN IN-

TUITIVE PRESENTATION
Query enrichment process and query rewriting proc-

ess have different goals. The first one takes into ac-

count the user profile to enrich the initial query and,

thus, increases the relevance of the obtained results.

The second one translates the query to access the real

data sources. To provide the user with a personalized

access to a set of distributed data sources, both ap-

proaches are necessary. Let R and E be respectively

the rewriting and the enrichment process, the problem

is to decide in which order the two processes should

be applied (E(R) or R(E)), that is: is it better to first

select data sources and then enrich the resulting re-

writings, or is it better to first enrich the user query

and then rewrite the enriched query? We designate

these two approaches as naive ones because it is a

simple composition of existing algorithms.

An alternative approach is a hybrid one using the ba-

sic ideas of the two previous algorithms but providing

a more integrated reformulation principle. This ap-

proach, called profile-based query rewriting (or R/P

for short), constitutes our contribution which will be

evaluated with respect to the two naive approaches.

This section gives an intuitive understanding of the

three query reformulation approaches.

3.1 Enrichment-Rewriting Approach: RRRR(EEEE)

The first naive reformulation approach consists in

enriching the initial query with the user profile before

computing the candidate rewritings of the obtained

enrichment. The goal of this approach is to increase

as much as possible the relevance of the query by ap-

plying the enrichment algorithm first and to take into

account as much profile predicates not conflicting

with the initial query as possible.

Due to the fact that in the R(E) approach, the enrich-

ment process is done without considering the data

source definitions, it may occur that some of the

predicates which have been added to the query are

useless or impossible to be rewritten. A profile predi-

cate is useless if it is already included in the source

definitions of all query rewritings.

As mentioned in the previous section, in some cases,

only the Top K profile predicates are used in the

query enrichment process. Consequently, if there are

useless predicates among the Top K ones, it is desir-

able to replace them so more profile predicates are

taken into account without modifying the parameters

of the enrichment process.

In the worst case, enriching the initial query can lead

to an empty set of rewritings. This occurs if a predi-

cate in the user profile, which has been used to enrich

the initial query, cannot be rewritten. Consider the

enriched query in Example 6 which contains the

predicate « TRAVEL.departure=’Toulouse’ ». This

predicate is conflicting with both sources which can

cover the query subgoal TRAVEL (i.e. PROMOHOLY-

DAY and LYONHOLYDAY); thus resulting in an empty

set of rewritings for the enriched query. A possible

solution to these problems is to take into account data

source definitions before query enrichment process.

3.2 Rewriting-Enrichment Approach: EEEE(RRRR)

The main idea of the rewriting-enrichment approach

is to process the rewriting of the user query prior to

the enrichment of these rewritings.

The profile predicates which can be used to enrich the

query rewritings are selected using the mappings be-

tween the query variables and the source variables,

computed during the rewriting process. The following

interactions may exist between a profile predicate p

and a query rewriting RW:

- p is conflicting with RW if p is conflicting with

the source definitions of RW,

- p is satisfied by RW if p is included in the source

definitions of RW,

- p can be expressed on RW if there is a distin-

guished source attribute, involved in the map-

pings ϕ, on which p can be expressed.

Consider the candidate rewritings of the initial query

Qu of Example 3, the user profile Pk of Example 5 and

the preference values K=5, M=2 and L=2 for the en-

richment algorithm. The set of profile predicates se-

lected for the enrichment process may differ from one

candidate rewriting to another due to the sources in-

volved in their definitions. For example, the profile

predicate (e) is conflicting with the definition of the

source SNCF (S3) and cannot be used to enrich the

candidate rewritings based on this source while it can

enrich the candidate rewritings based on

RIDEEVERYWHERE (S4). Notice that predicate (e) is

also satisfied by the candidate rewritings based on

PLANETRANSPORT and is not relevant for their en-

richment.

For the rest of the profile predicates, (c) is conflicting

with all candidate rewritings because it is in conflict

with the initial query and consequently is not selected

for the enrichment process. In the same way, the

predicate (d) is conflicting with all candidate rewrit-

ings and must be ignored. The predicate (g) and (k)

are expressed on attributes not involved in the map-

pings (i.e. cannot be used for the enrichment of the

candidate rewritings). In summary, the five predicates

{e, f, h, i, j} will be used to enrich the two candidate

rewritings based on S4, and the set of predicates {f, h,

i, j} will be used for the candidate rewritings based on

S2 and S3.

The advantage of the E(R) approach is its ability to

consider in the enrichment phase only predicates of

the user profile which are not conflicting and which

are not already contained in the source definitions. It

has a major disadvantage: the rewriting process has

defined once for all the target data sources; conse-

quently, only the profile predicate concerning these

sources can be used. An example of profile predicate

in Pk which cannot be used to enrich the candidate

rewritings of Qu is the predicate (g).

3.3 Profile-Based Query Rewriting: RRRR/PPPP

The third query reformulation approach is an im-

provement of the two previous ones. Instead of sepa-

rating the two processes, the enrichment process is

spread over the different phases of the rewriting proc-

ess. Starting from the rewriting algorithm [9], the idea

is to produce only candidate rewritings which are of

some relevance with respect to the user profile, i.e.

rewritings which can later integrate some part of the

user profile.

The user profile is schema-free in our approach, so it

does not contain any join predicate. The user can ex-

ploit its profile on any real or virtual database

schema, provided it exists at least a partial matching

between this schema and the user profile. We say that

the user profile has to be first interpreted before it can

be used with a particular schema. The profile inter-

pretation is the process of matching the attributes of

the user profile Pu, denoted by A(Pu), against those of

the schema S, denoted A(S). The result of this match-

ing is a set of mappings between semantically equiva-

lent attributes. This set of mappings can be seen as a

binary relation M between attributes of the user pro-

file and those of the schema, defined as follows:

M ⊆ A(Pu) × A(S) and (a, R.b) ∈ M if it exists a map-

ping between the attribute a ∈ A(Pu) and the attribute

b of the relation R such that R.b∈A(S). The attribute a

is said to be bound to the relation R through the inter-

pretation M and noted M{R.b→a}Sv. By extension,

any predicate p∈Pu, involving the attribute a is said to

be bound to the relation R through M. The problem of

computing the interpretation M is out of the range of

this paper. Consequently, in this paper, we consider

only interpreted profiles.

Example 7 gives an interpretation of the traveller’s

profile through the virtual schema Sv of Example 1. It

is almost similar to the profile definition of Example

5, except the joins which are not represented. Addi-

tionally, although not considered in this paper, the

mappings composing this interpretation can be char-

acterized by the semantic distance between the pair of

attributes (considered equal to 1 to simplify our ex-

ample).

Example 7: Interpreted user profile (P1)

M {TRAVEL.nbDays→nbDays>7 1.0 (c)

 TRAVEL.departure→departure=‘Toulouse’ 0.8 (d)

 TRANSPORT.mean→mean=‘plane’ 0.7 (e)

 TRANSPORT.wayType→wayType = ‘direct’ 0.6 (f)

 HOTEL.nbStars→nbStars > 3 0.5 (g)

 TRAVEL.tripType→tripType <>‘circuit’ 0.5 (h)

 TRANSPORT.comfort→comfort > 2 0.4 (i)

 TRAVEL.departure→departure = ‘Paris’ 0.3 (j)

 HOTEL.region→region = ‘city centre’ 0.2 (k)

} Sv

Given the interpretation of the user profile, the rewrit-

ing algorithm is extended first with a pre-processing

phase which expands the user query scope over the

virtual schema, using the user profile. Second, it in-

troduces pruning rules which eliminate rewritings that

are irrelevant with respect to the user profile. Third,

the enrichment is done on the basis of selected rewrit-

ings (i.e. the selected data sources). The whole query

reformulation process we propose is shown in Figure

1. It is composed of four steps: query expansion, rele-

vant sources identification, sources combination and

final enrichment.

The first step, query expansion, consists in augment-

ing the scope of the user query over the virtual

schema in such a way that it can better integrate the

user profile predicates. The virtual relations, to which

some profile predicates are bound and which are not

in the user query, are added to the FROM clause of

the user query. The expansion of the user query with

these additional relations prepares the integration of

some predicates of the user profile into the user

query. Obviously, adding these new relations to the

user query implies adding the joins which relate them

to the initial query relations. The search of these joins

is not trivial and will be developed later in section 5.

Query expansion

User Profile

User
Query

expanded
query

Virtual Schema

Final Enrichment

Relevant sources
identification

Relevant sources
combination

relevant
sources

rewritings

Data Sources Schemas

Reformulated
User Query

Figure 1. Query reformulation process

The second step, relevant sources identification, is

the same as the first part of the MiniCon algorithm

summarized in section 2.2. It roughly consists in se-

lecting source relations which will be used for the

rewriting of the user query. This is done by comput-

ing the descriptors (called MCD in MiniCon algo-

rithm) of these selected sources. This step does not

directly exploit the user profile but operates on the

whole set of relations of the user query, including

those resulted from the expansion step.

The third step, relevant sources combination, com-

bines the previously selected source relations repre-

sented by the MCDs, to generate candidate rewritings

which are worth to be efficiently enriched by the last

step of the algorithm. Rewritings which are worth to

be enriched are those which can integrate a certain

number of profile predicates, determined by a metric

we will define.

The fourth step elaborates the final enrichment of the

user query, possibly using the approach in [15], as we

have done in our prototype, or another enrichment

technique exploiting the outputs of the previous steps.

Compared to the naive query reformulation ap-

proaches, the R/P approach (as the R(E) approach) is

able to consider during the enrichment step, all pro-

file predicates not conflicting with the initial query.

This is due to the query expansion which is assumed

to enlarge the query scope with all virtual relations on

which at least one profile predicate is expressed. The

difference between the R(E) and the R/P approaches

is the ability of R/P to detect profile predicates which

cannot be rewritten. In summary, the hybrid approach

has the advantages of both naive query reformulation

approaches, but not their limitations: all and only use-

ful profile predicates are taken into account for query

enrichment.

The complete algorithm of this approach is detailed in

section 5. Steps 1 and 3 of the algorithm use a metric,

called coverage, which is defined in section 4. In or-

der to evaluate and compare this approach with the

naive ones, we introduce another metric, called preci-

sion, which is also presented in the following section.

4. EVALUATION METRICS
This section introduces two metrics which evaluate,

for a given query, the proportion of profile predicates

used during the enrichment phase and the real utility

of these predicates. The first provides the coverage of

the approach while the second estimates its precision.

These two metrics are usually used to measure the

results of a query execution and to compare them to

ideal results expected by the user. In our case, we aim

to evaluate reformulation approaches during the com-

pile time. Consequently, we are much more con-

cerned by the quality of query definition than by

query execution results. Obviously, these qualitative

measures are estimations which may or not be con-

firmed by other measures done on execution results.

But this latter goal is outside the scope of this paper.

The following paragraphs give a formal definition of

these metrics.

4.1 Coverage metric
For a given query reformulation approach, the cover-

age measures the proportion of profile predicates

which are usable by this approach. A profile predicate

is usable by a reformulation approach if it can be

used in the enrichment phase of this approach.

The weights of the predicates of the user profile are

more an estimation of the user preferences, made at

the time of the profile definition, than exact values.

To limit the possible imperfections of their definition,

we propose to partition the profile into a set of groups

such as the predicates in a group have approximately

the same importance for the user.

Let GR be the partitioning of a user profile Pu into N

groups {GR1, …, GRN}, (GR1 ∪…∪ GRN = Pu and

∀i,j ∈ 1..N, i≠j, GRi ∩ GRj = ∅). The importance Ii
of a group GRi is a function of the weights of its

predicates (it is more important to satisfy the predi-

cates of greater weight) and of the number of its

predicates (it is more interesting to satisfy 5 predi-

cates out of 10 than 1 out of 2). Let INi and IWi be the

relative importance of a predicate group GRi, com-

puted respectively according to the number and the

weights of its predicates. In our evaluation, we chose

as function for INi the percentage of predicates in

each group compared to the total number of predi-

cates in the user profile. The function for IWi is the

normalized average of the weights of the predicates of

each group:

i

GRp

iN

ij

j

i
i

i

i
GR

pw

GRAVGwith

GRAVG

GRAVG
IWand

Pu

GR
IN i

∑

∑

∈

=

===

)(

)(

)(

)(

where w(p) is the weight of the predicate p. Using

these two parameters, we can define the importance Ii

of a group as the balanced sum of INi and IWi:

βα

βα

+

×+×
= ii

i

IWIN
I ,

where α and β are constants which express the rela-
tive importance of the number of predicates and of

their weights. For instance, if the weight of the predi-

cates in a group is two times more important than

their number, then α=1 and β=2.

Let H1 and H2 be two sets of predicates and let C(H1,

H2) be the coverage of the predicates of H1 with re-

spect to the predicates of H2:

1

21

21),(
H

HH
HHC

∩
= .

Let UP(Pu, Qu, F) be the set of usable predicates ob-

tained from a profile Pu by a reformulation approach

F for a query Qu. The predicates in UP(Pu, Qu, F) are

expressed on attributes present in relations of Qu and

are not conflicting with the predicates of Qu.

Definition 1 (weighted coverage): Let GR be a par-

tition of the user profile Pu.The weighted coverage,

denoted by WC(Pu, Qu, F), of Pu by a set UP(Pu, Qu,

F) of usable predicates for a reformulation approach F

is equal to the balanced sum of the coverages of the

groups of GR by UP(Pu, Qu, F):

))F,,(,()F,,(
1

uui

N

i

iuu QPUPGRCIQPWC ∑
=

=

4.2 Precision metric
The precision for a given reformulation approach F

measures its capacity to take into account only profile

predicates which can be rewritten and which influ-

ence the final result of the query execution. A predi-

cate can influence the result of a query execution ei-

ther by adding a restriction to some query rewritings,

or by eliminating candidate rewritings. The first case

occurs if the predicate is not already contained in the

source definitions of at least one candidate rewriting.

In the latter case, the predicate eliminates at least one

contributive source to the rewriting of the query.

A predicate p, from a user profile Pu, is considered to

be really useful for the enrichment process of a query

Qu, if it satisfies the following conditions: (i) p can be

used to enrich Qu and (ii) p can be rewritten and (iii)

p influences the query execution result. The set of all

really useful predicates of a user profile Pu according

to a query Qu is denoted by RUP(Pu, Qu). All other

predicates of Pu which are not conflicting with Qu are

considered useless.

Let PUP(Pu, Qu, F) be the set of profile predicates

from Pu, potentially useful for the enrichment process

of a query Qu by a reformulation approach F. Thus,

PUP(Pu, Qu, F) represents the usable predicates

UP(Pu, Qu, F) without the useless predicates that F is

able to detect.

Definition 2 (precision): The precision, denoted by

PR(Pu, Qu, F), of Pu, used by a reformulation ap-

proach F for the enrichment of a query Qu is equal to

the percentage of really useful predicates among the

set of predicates considered to be useful by this ap-

proach:

),,(

),,(),(
),,(

FQPPUP

FQPPUPQPRUP
FQPPR

uu

uuuu

uu

∩
=

The coverage and the precision, previously defined,

allows to evaluate the query reformulation ap-

proaches and to show in a more objective way their

characteristics.

The following section formally defines the advanced

query reformulation approach and discusses the re-

sults obtained by the evaluation of the query reformu-

lation approaches, using the two evaluation metrics.

5. FORMAL PRESENTATION OF THE PRO-

FILE-BASED QUERY REWRITING R/P

This section gives a detailed description of the pro-

file-based query rewriting which constitutes our main

contribution to query personalization.

5.1 Query Expansion
Query expansion is the process of extending the user

query, defined on the virtual schema, using the scope,

over the same virtual schema, of the user profile. Ex-

tending the query with respect to a given profile

scope consists in adding to the query the most rele-

vant relations of the profile scope.

Given a virtual schema Sv and a user profile Pu, the

scope represents the set of relations of Sv on which at

least one attribute of Pu is bound (see section 3.3 for

the definition of a binding). The mappings M between

the user profile Pu and the virtual schema Sv allow

defining the scope of Pu over Sv as follows:

scope(Pu, Sv)={R | R∈ Sv ∧ ∃a∈ A(Pu), ∃b∈ A(R),

(a,R.b) ∈ M}.

Let us define the graph GSv=(VSv, ESv) where VSv is

the set of relations of the virtual schema Sv and ESv is

the set of joins between these relations. In term of

relations, the user query Qu can be seen as a graph

GQu = (VQu, EQu) where VQu is the set of relations of

the FROM clause of Qu, and EQu is the set of joins

used in Qu. Adding a relation R to Qu requires finding

a join path JR ⊆ ESv between a relation of VQu and R.

The graph representing the expanded query is thus

(VQu ∪ {R}, EQu ∪ JR).

Let RS be the relevant scope of Pu, i.e. the subset of

scope(Pu, Sv) containing the most relevant virtual rela-

tions. The graph representing the expanded query Qe

is:

),(U
RSR

RQuQuQe JERSVG
∈

∪∪=

Computing this graph consists in two main steps: (i)

virtual relation selection and (ii) virtual relation inte-

gration.

5.1.1 Virtual relation selection

The first step of query expansion consists in choosing

in the profile scope the virtual relations which will be

added to the initial query. The selection of these vir-

tual relations is achieved according to two criteria:

the length of the join paths and the weights of the

bound predicates.

Let p be a profile predicate and Rp ∈ scope(Pu, Sv) a

relation bound to p. Adding p to Qu leads to adding Rp

to Qu. Let JRp be a shortest join path in GSv between

Rp and one of the relations in Qu. If more than one

shortest path exist, one of them is randomly chosen.

According to [15], the weight of a profile predicate

decreases when the length of JRp increases. We denote

by nw(p, Qu, Sv) the new weight of p with respect to a

query Qu and a virtual schema Sv:

)(),,(pwSQpnw RpJ

vu λ= , where λ∈[0,1] is a con-

stant specifying the decreasing rate and w(p) is the

initial weight of the profile predicate.

The new weight of a predicate is decreasing faster

when the value of λ is smaller. When λ is equal to 0,
only profile predicates expressed on query relations

are considered. If λ is equal to 1, the new weight of a
predicate remains equal to its initial weight regardless

of the length of JRp.

For example, consider the initial query Qu in Example

3, the user profile P1 in Example 7, the virtual schema

Sv in Example 1and let λ be equal to 0.9. The joins in
Sv are: « TRAVEL.tid = TRANSPORT.tid » and

« TRAVEL.hid = HOTEL.hid ». Predicate (g) is bound

to the relation HOTEL. The join path

JHOTEL={TRAVEL.hid = HOTEL.hid} allows to add

HOTEL to Qu. Its length is 1 and thus nw((g), Qu, Sv) =

0.9
1×0.5 = 0.45.

Once the weights of the predicates in a user profile Pu

are updated, the relevance of each virtual relation R ∈
scope(Pu, Sv), denoted by rel(R, Pu), is computed. No-

tice that rel(R, Pu)=0 if R ∉ scope(Pu, Sv). The rele-
vance of a virtual relation is a scoring function de-

fined on the weights of the profile predicates which

are bound to this relation. This function allows sort-

ing the set of virtual relations with respect to their

relevance. There are many scoring functions which

can be used. We use here the coverage metric pre-

sented in section 4.1.

Finally the relevant virtual relations RS which will be

added to the query are chosen according to a given

criterion γ(R) which is based on their relevance. This
selection criterion can be defined in several ways, for

example by specifying a relevance threshold or the

number of Top K relations.

The algorithm for virtual relation selection is given in

Figure 2.

Algorithm SelectVirtualRelation

Input: Qu: initial query

 Sv: virtual schema

 Pu: user profile

 γ(R): criterion for virtual relation selection
Output: RS: Relevant scope of Pu over Sv

Begin

 Compute the updated profile P’u = {p | p ∈ Pu ∧
 w(p) = nw(p, Qu, Sv)}

 For each R ∈ scope(Pu, Sv)
 Compute the relevance rel(R, P’u)

 Return RS = {R | R ∈ scope(Pu, Sv) ∧ γ(R)}
End

Figure 2. Virtual relation selection algorithm

5.1.2 Virtual relation integration

Once the relevant virtual relations are selected, it re-

mains to integrate them into the user query. However,

each relation added to the query will make the rewrit-

ing process more time consuming. Indeed, for each

relation we want to add, several other intermediate

relations might also be inserted to allow the join be-

tween this relation and those of the query. Thus, it is

important to minimize the number of added relations

which is not an obvious task. Notice that a virtual re-

lation of the profile scope can be added to the initial

query even if it has not been selected for the query

expansion.

Minimizing the number of new virtual relations is

close to the Steiner Tree Problem (STP) [12]. The

STP is defined for a non directed graph G = (V, E)

where each edge e ∈ E is associated with a positive
weight. The STP consists in finding the minimal cost

tree which connects a subset W of nodes (W ⊆ V).
The STP is known to be NP-complete, so finding the

optimal solution is difficult and time consuming.

In our context, the graph G is GSv and W = VQu ∪ RS.
All edges have the same weight equal to 1. The main

difference between the STP and the virtual relations

integration problem is that in the latter one, the se-

mantics of the initial query has to be preserved. Con-

sequently, the join predicates of the initial query form

a non reducible subgraph which has to be part of the

solution. More details about the discovery of join

paths which connect a set of relations can be found in

[23].

During query compilation, the cost of computing an

optimal solution is prohibitive. Thus, we use the

Minimum Cost Paths Heuristic (MPH) [24] to add the

relevant profile scope to the query. MPH is an itera-

tive algorithm where each step consists in adding to

the partial solution the shortest path to the closest

node not yet added. The complexity of the MPH is

polynomial in O(mn²) where n is the number of nodes

in G and m is the number of nodes in W.

When using the MPH, it might be possible that for

some iteration, there is more than one shortest path

with smallest cardinality. In this case the relevancies

of the virtual relations of the paths are used to decide

which path has to be integrated first. Remark that

only virtual relations from the profile scope which are

not selected for query expansion have to be taken into

account. This is due to the fact that all virtual rela-

tions which are not in the profile scope have a rele-

vance of 0. If more than one path has the same rele-

vance, one is randomly selected.

Figure 3 shows the virtual relations integration algo-

rithm. This is an iterative algorithm which takes as

input the set of selected virtual relations RS. At each

step, the algorithm computes the set of shortest paths

having the smallest cardinality between the query re-

lations and the virtual relations in RS. If there are

more than one path, the most relevant one, according

to the relevance of the virtual relations which com-

pose it, is integrated to the query. The virtual relation

for which the path is constructed is removed from RS.

The algorithm ends when there are no other selected

virtual relations.

Algorithm IntegrateVirtualRelation

Input: Qu: initial query

 Sv: virtual schema

 Pu: user profile with actualized weights

 RS: selected virtual relations

Output: Expanded query

Begin

 While RS ≠ ∅
Compute the shortest paths J between the query

 relations and the virtual relations RS

MinSP = { sp | sp ∈ J ∧ |sp| =)(min sp
Jsp∈

}

Select one path sp ∈ MinSP with respect to the
 relevance of the virtual relations

Expand Qu with sp

Remove from RS the selected virtual relation

for which sp is constructed

 endWhile

 Return Qu

End

Figure 3. Virtual relations integration algorithm

For the initial query in Example 3 there is only one

virtual relation which can be added thus resulting in

the expanded query of Example 8.

Example 8: Expanded query

Qe =

SELECT vid, price, V.departure, T.mean, T.comfort

FROM TRAVEL V, TRANSPORT T, HOTEL H

WHERE V.tid = T.tid AND V.hid = H.hid

 AND V.arrival='Madrid'

 AND V.nbDays=4;

In this section, we presented query expansion. Selec-

tion of relevant sources is achieved by computing the

MCDs of the expanded initial query using the first

step of the MiniCon algorithm (see section 2.2) [9].

The next section describes how to combine these

MCDs to generate query rewritings.

5.2 Finding Relevant Query rewritings
Adding virtual relations to the user query allows the

use of some of the profile predicates bound to these

relations. The subset of profile predicates bound to

the relations of the expanded query is called useful

profile.

To build query rewritings, the MCDs have to be com-

bined. This step has to take into account the useful

profile to produce only relevant candidate rewritings,

i.e. those which can be enriched by a sufficient num-

ber of profile predicates.

The main idea of our proposal is to explore the search

space in a level wise manner which allows to prune

non relevant MCD combinations as soon as possible.

To achieve this goal, we adapted the well known Ap-

riori algorithm [10]. This algorithm was introduced

and successfully used for mining frequent item sets

for association rules [1].

The Apriori algorithm employs an iterative approach

to find the set of “solutions”, i.e. subsets which sat-

isfy a property. It is called a level wise algorithm be-

cause it explores the search space in a breadth first

way and solutions of size i are used to explore candi-

dates of size i+1. Indeed, candidates of size i+1 are

obtained by combining solutions of size i. To benefit

from the efficiency of Apriori algorithm, the desired

property has to be anti-monotone: if a set cannot pass

the test, all its supersets will fail the same test as well.

Such a property is used during candidate generation

to prune the set of candidates.

In our context, the sets are combinations of MCDs

and the elements are the MCDs. A candidate solution

(a combination of MCDs) is pruned if one of the fol-

lowing conditions holds: (i) the candidate solution

forms a rewriting, (ii) there is at least one redundant

MCD in the candidate solutions, (iii) there are two

MCDs in which source definitions are conflicting,

(iv) the score of the MCDs does not satisfy a given

threshold. Notice that, contrarily to Apriori, the solu-

tions we search for are part of the pruned elements,

i.e. solutions are subsets of the so-called negative

border.

The first two conditions ensure that the produced

candidate rewritings are not redundant. When a com-

bination of MCDs forms a candidate rewriting, all

query subgoals are covered and any new MCD will

always be redundant. Candidate rewritings are stored

in order to be returned by the algorithm as result of

the rewriting process.

The third condition eliminates a candidate if it con-

tains conflicting predicates expressed on attributes

mapped to the same query attributes.

For the fourth pruning condition, we need a mono-

tonically increasing scoring function. We use the fact

that when a new MCD is added to a combination of

MCDs, the set of profile predicates which are ex-

cluded by the MCDs is increasing (due to the fact that

only conjunctive queries are considered). The ex-

cluded profile predicates for a combination of MCDs

is the union of the profile predicates excluded by each

MCD separately. A profile predicate is excluded by

an MCD if (i) it is conflicting with the source defini-

tions of the MCD or (ii) it cannot be expressed on the

source of the MCD chosen to cover the virtual rela-

tion to which the predicate is bound. The relevance of

the excluded profile predicates by a combination of

MCDs is called a penalty. This function is anti-

monotone as needed by Apriori algorithm. Conse-

quently, if a combination of MCDs is irrelevant (i.e.

its penalty is greater than a given threshold), then all

candidates containing this combination will be irrele-

vant.

The algorithm for the combination of MCDs is shown

in Figure 4. It begins by computing the penalties of

the MCDs so that those which do not satisfy the pen-

alty threshold are pruned. The algorithm uses the Ap-

rioriGen function to generate combinations of MCDs

[1]. At each level, the redundant combinations are

pruned before computing the penalties. Then, combi-

nations which do not satisfy the penalty threshold and

candidate rewriting are pruned. The algorithm ends

when there are no more combinations to explore.

Algorithm CombineMCDs

Input: MCD: set of generated MCDs

 Pu: user profile

 penalty({mcdi},P) : penalty function for a set

 of MCDs

 ρ: penalty threshold
Output: Relevant candidate rewriting CR

Begin

 i=1

 Li = {m ∈ MCD | penalty(m, Pu) ≤ ρ }

 While Li ≠ ∅
 Ci+1 = AprioriGen(Li)

 For each e ∈ Ci+1

 if(e is not redundant ∧

 e is not conflicting ∧

 penalty(e, Pu) ≤ ρ)
 if(e is a rewriting)

 CR = CR ∪ {e}
 else

 Li+1 = L1+1 ∪ {e}
 i = i+1

 endWhile

 Return CR

End

Figure 4. MCDs combination algorithm

Table 2. MCDs for Qe

MCD

ID
SOURCE SUB-

GOALS

A WORLDHOTELS 3

B PROMOHOLYDAYS 1,3

C LYONHOLYDAYS 1

D LYONHOLYDAYS 3

E SNCF 2

F PLANETRANSPORT 2

G RIDEEVERYWHERE 2

Consider the expanded query Qe in Example 8 and the

user profile P1 in Example 7. The penalty function

used hereafter is the weighted coverage of the ex-

cluded predicates (see section 4.1). The predicate

groups of P1 used to compute the penalty are {c,d},

{e,f,g,h}, {i,j,k}. Assume that the weights of the pro-

file predicates are independent of the number of joins

necessary to relate them to the query (i.e λ=1) and let
the penalty threshold be set to 0.5. The MCDs gener-

ated for Qe are presented in Table 2. The source

PROMOHOLYDAYS must be used to cover both sub-

goals HOTEL and TRAVEL because of the join on the

variable “hid” which is existential in its definition.

Figure 5 presents the execution of the combination

algorithm applied to the set of MCDs in Table 2. In

order to make the figure clearer, the edges between

nodes of different levels are not represented. Nodes in

level i represent combinations of i MCDs and the

numbers above the nodes are penalty thresholds. In

the first level of Figure 5, the penalty of each MCD is

computed and only relevant MCDs are combined. In

our example, all initial MCDs satisfy the penalty

threshold. Consequently, all possible combinations of

two MCDs between seven have to be checked. The

redundant combinations such as AB or EF are pruned

and the penalties of the rest of the combinations are

computed. Then, combinations which do not satisfy

the penalty threshold (for example BE) and candidate

rewriting (BF and BG) are pruned. Finally, all combi-

nation generated in the third level are candidate re-

writings and the algorithm stops. In this example, at

the third level, we have to check only two MCDs

combinations instead of the thirty five possible com-

binations of three MCDs among seven.

Combinations to expand

Redundant MCDs

Penalty > threshold

Candidate rewritings

ACF ACG

0.45 0.45

Level3

A B C D E F G

0 0.45 0.45 0.08 0.1 0 0

Level1

0

AB AC AD AE AF AG BC BD BE BF BG CE CF CG DE DF DG EF EG FG

0.45 0.1 00 0.45 0.45 0.18 0.08 0.080.55 0.45 0.45 0.54 0.55

Level2 CD

Combinations to expand

Redundant MCDs

Penalty > threshold

Candidate rewritings

ACF ACG

0.45 0.45

Level3 ACF ACG

0.45 0.45

Level3

A B C D E F G

0 0.45 0.45 0.08 0.1 0 0

Level1

0

A B C D E F G

0 0.45 0.45 0.08 0.1 0 0

Level1

0

AB AC AD AE AF AG BC BD BE BF BG CE CF CG DE DF DG EF EG FG

0.45 0.1 00 0.45 0.45 0.18 0.08 0.080.55 0.45 0.45 0.54 0.55

Level2 CDAB AC AD AE AF AG BC BD BE BF BG CE CF CG DE DF DG EF EG FG

0.45 0.1 00 0.45 0.45 0.18 0.08 0.080.55 0.45 0.45 0.54 0.55

Level2 CD

Figure 5. Example of MCDs combination

The result of the hybrid query reformulation approach

in this example is a set of query rewritings which can

be enriched by at least 50% of the useful profile

predicates.

Actually, the last phase of the reformulation algo-

rithm is done using the algorithm presented in [15] to

which we have provided all the necessary and rele-

vant profile knowledge to make an effective query

enrichment of all the produced rewritings.

5.3 Experiments
In order to evaluate the query reformulation ap-

proaches, we used a small but representative test bed

composed of the virtual schema of Example 1, the

source definitions of Example 2, and a sample of 4

user profiles and 10 queries. These profiles and que-

ries were constructed by varying the number of predi-

cates they contain and the virtual relations to which

these predicates are bound. More details on the tests

carried out can be found in [14]. The values of cover-

age and precision obtained by the reformulation ap-

proaches are presented in tables 3 and 4.

Table 3. Coverage of profile predicates

Profiles

Queries R /P RRRR (EEEE) EEEE (RRRR) R /P RRRR (EEEE) EEEE (RRRR) R /P RRRR (EEEE) EEEE (RRRR) R /P RRRR (EEEE) EEEE (RRRR)

Q1 0,63 0,82 0,45 0,91 0,91 0,91 0,86 0,86 0,86 0,90 0,90 0,60

Q2 0,82 1,00 0,36 1,00 1,00 0,77 1,00 1,00 0,67 1,00 1,00 0,43

Q3 0,82 1,00 0,82 0,73 0,73 0,73 0,86 0,86 0,86 1,00 1,00 1,00

Q4 0,72 0,91 0,54 0,91 0,91 0,91 0,91 0,91 0,91 0,90 0,90 0,60

Q5 0,82 1,00 0,36 0,73 0,73 0,50 0,86 0,86 0,52 1,00 1,00 0,43

Q6 0,82 0,82 0,64 0,91 0,91 0,91 0,71 0,71 0,71 1,00 1,00 0,62

Q7 0,82 0,82 0,36 0,73 0,73 0,50 0,71 0,71 0,38 1,00 1,00 0,43

Q8 0,73 0,73 0,46 0,83 0,83 0,59 0,91 0,91 0,52 0,76 0,76 0,49

Q9 0,82 1,00 0,54 1,00 1,00 0,77 1,00 1,00 0,67 0,85 0,85 0,59

Q10 0,72 0,72 0,72 0,66 0,66 0,66 0,62 0,62 0,62 0,90 0,90 0,90

P1 P2 P3 P4

Table 4. Precision of profile predicates

Profiles

Queries R /P RRRR (EEEE) EEEE (RRRR) R /P RRRR (EEEE) EEEE (RRRR) R /P RRRR (EEEE) EEEE (RRRR) R /P RRRR (EEEE) EEEE (RRRR)

Q1 1,00 0,88 1,00 1,00 0,88 1,00 1,00 1,00 1,00 1,00 0,90 1,00

Q2 1,00 0,89 1,00 1,00 0,90 1,00 1,00 1,00 1,00 1,00 0,91 1,00

Q3 1,00 0,89 1,00 1,00 0,88 1,00 1,00 1,00 1,00 1,00 0,91 1,00

Q4 1,00 0,88 1,00 1,00 0,88 1,00 1,00 1,00 1,00 1,00 0,89 1,00

Q5 1,00 0,89 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00

Q6 1,00 1,00 1,00 1,00 0,86 1,00 1,00 1,00 1,00 1,00 0,90 1,00

Q7 1,00 1,00 1,00 1,00 0,86 1,00 1,00 1,00 1,00 1,00 0,90 1,00

Q8 1,00 1,00 1,00 1,00 0,89 1,00 1,00 1,00 1,00 1,00 0,89 1,00

Q9 1,00 0,88 1,00 1,00 0,89 1,00 1,00 1,00 1,00 1,00 0,89 1,00

Q10 1,00 1,00 1,00 1,00 0,75 1,00 1,00 1,00 1,00 1,00 0,88 1,00

P1 P2 P3 P4

The results materialize the intuitive analysis which

we had done in section 3. In the majority of the cases,

the R(E) and the R/P approaches have the same pro-

file coverage. The unique situation, where the values

of their coverage differ, occurs when the profile con-

tains predicates which cannot be rewritten (for exam-

ple the predicate (d) in P1 of Example 7). In fact both

approaches consider all profile predicates not con-

flicting with the initial query but R/P works better as

it detects profile predicates which cannot be rewrit-

ten. Consequently, the R/P approach has the best

coverage considering only rewritable profile predi-

cates. The coverage obtained by the E(R) approach is

at most equal to that of the R/P approach. This is due

mainly to the fact that in the E(R) approach the re-

writing process has defined once for all the target

data sources; consequently, only the profile predicate

concerning these sources can be used.

According to her respective precisions, the reformula-

tion approaches E(R) and R/P have the same 100%

precision. Indeed, in this case, enrichment is made on

the candidate rewritings of the initial query for E(R)

(or expanded query for R/P) which contain the predi-

cates of the source definitions. All the needed infor-

mation for the identification of the useful predicates

(predicates of the initial query, user profile predicates

and predicates of the source definitions) is thus avail-

able. In contrast to E(R) and R/P, the R(E) approach

does not allow to take into account the source defini-

tions in the choice of the profile predicates for the

enrichment process. There are two types of useless

profile predicates not detected by the R(E) approach:

(i) predicates which are satisfied by all candidate re-

writings and (ii) predicates which cannot be rewritten.

In conclusion, the R(E) approach has the best profile

coverage but can use useless predicates for enrich-

ment. Its critical point is the use of predicates which

cannot be rewritten. In contrast to the R(E) approach,

the E(R) approach takes into account only useful

predicates, but does not allow to use all of them. This

approach misses any predicate which cannot be ex-

pressed on the candidate rewritings of the initial

query and does not allow to take into account the

predicates which are either conflicting or satisfied by

all candidate rewritings. Finally, the R/P approach

has the best coverage according to the rewritable pro-

file predicates and has the best possible precision. It

considers profile predicates which are either conflict-

ing or satisfied by all candidate rewritings, by assign-

ing a greater penalty score to candidate rewritings

which do not satisfy those predicates.

6. CONCLUSION
We proposed here a query rewriting algorithm which

takes into account information about user preferences

stored in his profile. This work is well adapted in a

context where data sources are distributed such as in

a mediation system. Moreover, two metrics were de-

fined to quantitatively evaluate this algorithm with

respect to the part of the user profile it can use and to

the relative importance of this part. Based on these

metrics, an experiment showed the interest of this

algorithm compared to two naive approaches.

This work has to be extended to several directions.

First of all, we are currently performing experiments

to validate the approach by considering the results of

the execution of the rewritings given by our algo-

rithm. Other experiments have to be done to measure

the execution times of the algorithm. Our preliminary

results are promising, showing that the personaliza-

tion cost is acceptable. Apart from the experiments,

much work remains to be done in considering the im-

pact of other type of preferences on the rewriting

process.

ACKNOWLEDGEMENT

This research was partially supported by the French

Ministry of Research and New Technolologies under

the ACI program devoted to Data Masses (ACI-MD),

project #MD-33.

7. REFERENCES
[1] Agrawal, R., and Srikant, R. Fast algorithms for

mining association rules. In Proceedings of the

International Conference on Very Large Data-

Bases (VLDB), Santiago, Chile, 1994.

[2] Bosc, P., Pivert O. SQLf : A Relational Data-

base Language for Fuzzy Querying. IEEE

Transactions on Fuzzy Systems, vol. 3, No 1, 1-

17, 1995.

[3] Bouzeghoub, M., Kostadinov

D. Personnalisation de l'information : aperçu de

l'état de l'art et définition d'un modèle flexible

de profils. Dans les actes de la seconde COnfé-

rence en Recherche d'Informations et Applica-

tions (CORIA), Grenoble, France, 2005.

[4] Bright, L., Raschid L. Using Latency-Recency

Profiles for Data Delivery on the Web. In Pro-

ceedings of the 28th Conference on Very Large

Data Bases, Hong Kong, China, 2002.

[5] Calvanese, D., Lembo D., Lenerini M. Survey

on methods for query rewriting and query an-

swering using views. Technical report, Univer-

sity of Rome, Roma, Italy, 2001.

[6] Chakrabarti, K., Garofalakis M., Rastogi R.,

Shim K. Approximate Query Processing Using

Wavelets. In Proceedings of 26th International

Conference on Very Large Data Bases, Cairo,

Egypt, 2000.

[7] Duschka, O., Genesereth M. Answering Recur-

sive Queries Using Views. In Proceedings of

the 16
th
 ACM SIGACT-SIGMOD-SIGART Con-

ference on Principles of Database Systems,

PODS, Tucson, AZ, 1997.

[8] Eisenstein, J., Puerta A. Adaptation in Automa-

ted User-Interface Design. In Proceedings of the

International Conference on Intelligent User

Interfaces, LA, USA, 2000.

[9] Halevy, A., Pottinger R, MiniCon: A scalable

algorithm for answering queries using views.

Very Large Data Bases Journal, Vol. 10, 182-

198, 2001.

[10] Han, J., and Kamber, M. Data Mining: Concepts

and Techniques. 2nd ed. Morgan Kaufmann,

2006.

[11] Heer J., Newberger A., Beckmann C., Hong J.

liquid: Context-Aware Distributed Queries.

UbiComp 2003: Ubiquitous Computing Journal,

2003.

[12] Hwang, F. K., Richards, D. S., and Winter, P.

The Steiner Tree Problem. Elsevier, North-

Holland, 1992.

[13] Kießling W. Foundations of Preferences in Da-

tabase Systems. In Proceedings of the 28th

Conference on Very Large Data Bases, Hong

Kong, China, 2002.

[14] Kostadinov D., Bouzeghoub M., Lopes S. Accès

personnalisé à des sources de données multi-

ples. Technical Report, Laboratoire PRiSM,

Université de Versailles, France, 2006.

[15] Koutrika, G., Ioannidis Y. E. Personalization of

Queries in Database Systems. In Proceedings of

the 20th International Conference on Data En-

gineering, Boston, Massachusetts, USA, April,

2004.

[16] Koutrika, G., Ioannidis Y. E. Personalized Que-

ries under a Generalized Preference Model. In

Proceedings of the 21st International Confer-

ence on Data Engineering (ICDE 2005), To-

kyo, Japan, April 5-8, 2005.

[17] Lacroix, M., Lavency P. Preference:Putting More

Knowledge into Queries. In Proceeding of the

13th Very Large Data Bases Conference (VLDB),

Brighton, 1987.

[18] Levy, A. Y., Rajaraman A., Ordille J. J. Query-

ing Heterogeneous Information Sources Using

Source Descriptions. In Proceedings of the

22nd Very Large Data Bases Conference,

Bombay, India, 1996.

[19] Li, C., Chang K., Ilyas I., Song S. RankSQL:

Query Algebra and Optimization for Relational

Top-k Queries. In Proceedings of the ACM

SIGMOD International Conference on Man-

agement of Data, Baltimore, USA, 2005.

[20] Naumann, F., Freytag J.C., Spiliopoulou M.

Quality Driven Source Selection Using Data

Envelope Analysis. In Proceedings of the MIT

Conference on Information Quality (IQ'98),

Cambridge, USA, 1998.

[21] Qian, X. Query folding. In Proceedings of the

Twelfth International Conference on Data En-

gineering (ICDE), New Orleans, Louisiana,

February 26 - March 1, 1996.

[22] Shearin, S., Lieberman H. Intelligent Profiling by

Example. In Proceedings of Conference on Intelli-

gent User Interfaces, ACM Press, Santa Fe, NM,

USA, 2001.

[23] Soukane, A. Génération automatique de requê-

tes de médiation avec prise en compte des be-

soins des utilisateurs dans un environnement

hétérogène. PhD Thesis, Université de Versail-

les-Saint-Quentin-en-Yvelines, December,

2005.

[24] Takahashi, H., Matsuyama A. An approximate

solution for the Steiner problem in graphs.

Mathematica Japonica, 24, 1980, 573-577.

[25] Vidal, M.E., Raschid L., Marquez N., Cardenas

M., Wu Y. Query Rewriting in the Semantic

Web. In Proceedings of the 22nd International

Conference on Data Engineering Workshops,

ICDE 2006, Atlanta, GA, USA, 2006.

