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Abstract For some years, data summarization techniques have been developed to handle the

growth of databases. However these techniques are usually not provided with tools for end-

users to efficiently use the produced summaries. This paper presents a first attempt to develop a

querying tool for the SAINTETIQ summarization model. The proposed search algorithm takes

advantage of the hierarchical structure of the SAINTETIQ summaries to efficiently answer

questions such as “how are, on some attributes, the tuples which have specific characteristics?”

Moreover, this algorithm can be seen both as a boolean querying mechanism over a hierarchy

of summaries, and as a flexible querying mechanism over the underlying relational tuples.

Keywords Data summarization · Linguistic summaries · Summary querying · Relational

database · Flexible querying · Fuzzy labels

1. Introduction

In order to handle the growth in size of databases, many approaches have been developed to

extract knowledge from huge databases. One of these approaches consists in summarizing

data (see for example Cubero et al., 1999; Dubois and Prade, 2000; Kacprzyk, 1999; Lee and

Kim, 1997; Raschia and Mouaddib, 2002). However, summarization techniques are usually

not provided with tools for end-users to efficiently use the summaries. As a consequence,

users have to directly interpret the summaries, which is conceivable with a few summaries

only. In other cases, tools are necessary.

In this paper, the structured data summarization model SAINTETIQ developed in our

research team (Raschia and Mouaddib, 2002) is considered. SAINTETIQ provides a compact

representation of a database, rewriting the tuples by means of linguistic variables (Zadeh,

1975) defined on each attribute, and classifying them in a hierarchy of summaries. The set

of summaries, produced by the process, describes the data in a comprehensible form. Thus,
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each summary, expressed with fuzzy linguistic labels, symbolizes a concept that exists within

the data.

This paper proposes a querying mechanism for users to efficiently exploit the hierarchical

summaries produced by SAINTETIQ. The first idea is to query the summaries using the vocab-

ulary of the linguistic variables defined for the summarization process. Although linguistic

terms are used in the expression of queries, the querying process is clearly boolean. Since the

querying vocabulary is the one used within the summaries, the linguistic terms have become

the attribute values in the summaries and query answers contain these linguistic terms only.

Then, basic queries such as “how are, on attribute(s) Ak , the tuples which are di, j on Ai ”

(e.g., “what is the hardness of metals whose fusion temperature is high”), can be answered

very efficiently as the querying process relies on boolean operations. Moreover, the algorithm

takes advantage of the hierarchical structure of the summaries, which also works as a kind of

multidimensional index, in order to obtain the answer more rapidly. The gain is particularly

important in case of a null answer, as only a small part of the summaries hierarchy has to be

explored, instead of the entire relation.

Querying the summaries as explained above is interesting as it makes it possible to rapidly

get a rough idea of the properties of tuples in a relation. In case of null answers, it clearly

saves time: examining the top summary of a hierarchy is enough to know there is no answer

for an empty result set query. Suppose for instance that one can access several databases.

Querying their summaries can allow to rapidly determine which ones are likely to give an

answer.

In other cases, a rough answer is often not enough. Thus, the second idea is to query the

database through the summaries, which would be done by 1—selecting some summaries from

the summary hierarchy w.r.t. criteria specified by the query and 2—retrieving the database

records’ identifiers from the selected summaries. This process is then related to the “flexible

querying of relational databases” trend of research. Indeed, in this case, linguistic terms are

used in the expression of queries, and the answer would be composed of tuples from the

original relation, ranked according to a degree of satisfaction to the query.

The next section describes flexible queries of databases and their features compared to

classical queries. It exposes some earlier works done in this field by other researchers. Section

3 presents an overview of the SAINTETIQ model, briefly depicting the representations of

summaries and the different steps of the summary building process. It also highlights the

distinctive aspects of our approach. Section 4 thoroughly explains how advantage can be

taken from the use of the SAINTETIQ summaries hierarchies in a flexible querying process.

Expression of queries, selection of summaries and formation of results are then reviewed.

2. Flexible querying of regular databases

A flexible querying process operating on relational databases searches the tuples for adequacy

to a query using an extension of a standard language, usually SQL. According to Larsen

(1999), a flexible querying process of a database can be divided in three steps: extension of

criteria, selection of results and ordering.

The first step uses similarity between values to extend the criteria, i.e. to allow graded

semantics for any criterion, which can now express “around 20” instead of being limited to

the binary semantics of “equal to 20” or “between 18 and 22”. The second step, namely the

selection of results, determines which data will participate in the answer to the query. These

data are afterwards referred to by the term “results”: the set of all results constitute the answer

to a query. The last step (ordering) follows from the extension of criteria. It discriminates
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among the results on the basis of their relative satisfaction to the graded semantics: a value

of 20 is better ranked than a value of 18.

The fuzzy set theory is often used in flexible querying (see Dubois and Prade, 1997)

because it provides a formal framework to handle the graduality and vagueness inherent to

natural language. The following works, which are representative of the research on flexibility

in database querying, exemplify the use of fuzzy sets. They are essentially characterized by

a tuple-oriented processing, the possibility to define new terms and especially, the use of

satisfaction degrees.

2.1. SQLf

The querying language SQLf, proposed by Bosc and Pivert (1994), is an extension of SQL

aiming at “introducing fuzzy predicates into SQL wherever possible”. An augmentation of

both the syntax and semantics of SQL is performed so that most elements of a query can be

fuzzified. These elements include operators, aggregation functions, modifiers (very, really,

more or less), quantifiers (most, a dozen) as well as general description terms such as young

or well-paid.

Different interpretations are possible for the same query, for instance fuzzy sets crisp

cardinality or Yager’s ordered weighted averaging operators (Yager, 1988). It occurs for each

record and yields a grade of membership (of the record to the query) which is used to rank

the results. An example of query in SQLf is “select 10 dpt from EMPLOYEE group by
dpt having most-of (age = young) are well-paid” where standard SQL keywords are in

bold face, and dpt and age are attributes from a relation named EMPLOYEE. The query

selects the 10 departments which have the best satisfaction of the condition “most of the

young employees are well-paid”.

2.2. FQUERY

FQUERY (Kacprzyk and Zadro«zny, 2001) is an integration of flexible querying into an

existing database management system, namely Microsoft Access. The system allows queries

with vague predicates expressed through fuzzy sets. Queries may contain linguistic quantifiers

and attach different levels of importance to attributes. In doing so, the authors try to apply

the computing with words paradigm and, eventually, deal with linguistic values, quantifiers,

modifiers and relations.

FQUERY uses fuzzy sets for the imprecision aspect and performs a syntax and semantics

extension of SQL. Linguistic values and quantifiers are represented as fuzzy sets. On the

semantics side, the query is considered as a fuzzy set resulting from the combination of

fuzzy sets from linguistic values and quantifiers. Accordingly, each record selected by a

classical SQL query, has a satisfaction degree used in a ranking step since it indicates how

well the record corresponds to the query.

2.3. SummarySQL

Developed by Rasmussen and Yager (1997), SummarySQL is a fuzzy query language in-

tended to integrate summaries into a fuzzy query. The language can evaluate the truth degree

of a summary guessed by the user. It can also use a summary as a predicate in a fuzzy query.

A summary expresses knowledge about the database in a statement under the form “Q
objects in DB are S” or “Q R objects in DB are S”. DB stands for the database, Q is a linguistic

Springer



62 J Intell Inf Syst (2006) 26: 59–73

quantifier and R and S are summarizers (linguistic terms). One can obtain statements like

“most people in DB are tall” or “most tall people in DB are heavy”.

Predicates (i.e. summaries) and linguistic terms are fuzzy sets in the expression that rep-

resents the selection condition. The expression is evaluated for each tuple and the associated

truth values are later used to obtain a truth value for the summary. SummarySQL is used to

determine whether, or to what extent, a statement is true. It can also be used to search for

fuzzy rules.

2.4. FSQL

FSQL (Galindo, 1998) is an extension of SQL in which all SQL expressions are valid.

The language is available through a client-server architecture in which the server software

accesses an Oracle database. SQL is extended to allow flexible conditions using linguistic

labels, fuzzy comparison operators, fuzzy constants and many other fuzzy constructs. For

instance, a fuzzy quantifier can be specified in the language’s metaknowledge base by giving

the four values that define a trapezoidal possibility distribution. Each condition in a query

can be given a threshold that sets the minimum satisfaction degree for the condition. FSQL

does not limit flexibility to the SELECT clause. INSERT, UPDATE and DELETE are also

supported.

FSQL is remarkable in two aspects. First, the wide variety of flexible constructs that are

available and second, it is one of the very few, it not the only, fuzzy extensions of SQL

implemented over an existing database management system.

3. Querying the SaintEtiQ summaries

The targeting of database records in flexible queries may lead to prohibitive response times

when a large number of records is involved, or when subqueries are employed. Waiting for

an answer for a long time is frustrating, particularly when the query fails (that is, it has no

matching record in the dataset).

Database summaries offer a means for significantly reducing the volume of input for pro-

cesses that require an access to the database. The response time benefits from the downsizing.

Furthermore, for this querying process, performance does not depend on specific combina-

tions of attributes, i.e., whether the attributes are indexed or not, since these summaries are

general indexes for the underlying data (Raschia, 2001).

When querying the summaries, the response time gain is made clearly at the expense

of a loss of precision in the answer. This is of no importance when only a rough answer is

required. This can be the case for instance when querying a medical database for anonymous,

statistical information. Indeed, precise information can violate medical confidentiality. The

loss of precision is also of no importance when a request only aims at determining the absence

of information in a database. As already said, this is the case when one wants to know if a

database is likely to answer the query.

When more details about the tuples are needed, querying the summaries is a first step only:

the entire set of relevant tuples can be easily retrieved from the answer summaries. The query-

ing mechanism remains efficient, and there is no loss of precision in the answer. However,

the loss is in the querying language expressiveness. At present, only the linguistic variables

used to build the summaries hierarchy can be used in the expression of the queries. Moreover,

as the generated summaries can be considered as one table in the database relational model,
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Fig. 1 Linguistic variables for the MATERIALS table

the implemented querying operations are the selection and projection from the relational

algebra.

3.1. Running example

In the rest of this paper, a single example illustrates our discussion. It is based on the relation

R = (thickness, hardness, temperature) of a table MATERIALS. A tuple from that table

describes a material used in an imaginary metallurgy plant to produce square sheets. Attribute

thickness is expressed in millimeters and has a limited range (0.15 mm to 50 mm).

Attributehardness is the final product’s expected value on scale B of the Rockwell hardness

test. Attribute temperature is the melting point for the metal or alloy that constitutes a

material.

Figure 1 shows the linguistic variables associated with the attributes of R. These linguistic

variables constitute the new attribute domains used for the rewriting of tuples in the summa-

rization process. Table 1 shows the portion of the MATERIALS table that corresponds to the

hierarchy in Figure 2. The summaries that appear in Figure 2 are described in Table 2.

3.2. Summaries in SAINTETIQ

The SAINTETIQ model aims at apprehending the information from a database in a synthetic

manner. This is done through linguistic summaries structured in a hierarchy. The model offers

different granularities, i.e., levels of abstraction, over the data. The steps necessary to build

a summary hierarchy are described below.

First, records are translated in accordance with a background knowledge provided by the

user. For each attribute, linguistic variables (which are part of the background knowledge)

offer a mapping of the attribute’s value to linguistic labels describing that value. For instance,
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Table 1 Part of the
MATERIALS table Materials Tuple Translation

UZ40 ta = 〈10, 38, 900〉 ta1 = 〈 0.7/medium, 1.0/soft,

0.85/moderated 〉
CuSn12 tb = 〈8, 40, 850〉 tb1 = 〈 0.35/medium, 0.9/soft,

1.0/moderated 〉,
tb2 = 〈 0.35/thin, 0.9/soft,

1.0/moderated 〉
CuAs05 tc = 〈12, 44, 896〉 tc1 = 〈 1.0/medium, 0.4/soft,

0.9/moderated 〉,
tc2 = 〈 1.0/medium, 0.4/hard,

0.9/moderated 〉
Fe td = 〈10, 35, 1530〉 td1 = 〈 0.7/medium, 1.0/soft,

0.85/normal 〉
Ni te = 〈5, 35, 1453〉 te1 = 〈 1.0/thin, 1.0/soft,

0.96/normal 〉
. . . . . . . . .

Fig. 2 Part of a summary
hierarchy for MATERIALS

te.thickness = 5 mm is expressed as te1
.thickness = {1.0/thin} where 1.0 tells how

well the label thin describes the value 5 mm (1.0 is the satisfaction degree of thin by 5 mm).

Applying this mapping to each attribute of a relation corresponds to a translation of the initial

tuple into another expression called a candidate tuple.

One attribute value may be described by more than one fuzzy label (e.g. 8 mm is described

by medium and thin). It follows that one tuple (for instance tb and tc in Table 1) may yield

many candidate tuples.

Second, each candidate tuple is incorporated into the growing hierarchy and reaches a leaf

node where other candidate tuples with the same labels are stored. This can be seen as a clas-

sification of the candidate tuple. It is important to notice that the tree is modified throughout

candidate tuples incorporation: it progressively becomes a complete representation of the

data. Its evolution is partly controlled by learning operators (see Raschia, 2001) that try to

maximize the inner-class similarity and the inter-class dissimiliarity.

An analogy could be that the hierarchy of summaries is a network of pipes with a single

entry point at the top and several outlets to a set of buckets at the bottom, one outlet per

bucket. Candidate tuples can be seen as objects of different types. From the entry, an object is

directed to the bucket it belongs to. But through the process of reaching the adequate bucket,

it creates some structural modifications in the network of pipes so some craftsmen (that is, the

learning operators) have to constantly adapt the network. Some junctions are made thinner

or larger, some pipes are added or deleted, etc... In the end, all objects of the same type are

dispatched into buckets and the lengths of paths to the buckets are minimal. Each bucket that
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Table 2 Description of some summaries

Summary Intension Cover

z3 〈 1.0/medium, 1.0/soft, 1.0/moderated 〉 ta1 , tb1 , tc1

z4 〈 0.7/medium, 1.0/soft, 0.85/normal 〉 td1

z5 〈 0.35/thin, 0.9/soft, 1.0/moderated 〉 tb2

z6 〈 1.0/medium, 0.4/hard, 0.9/moderated 〉 tc2

z7 〈 1.0/thin, 1.0/soft, 0.96/normal 〉 te1

z1 〈 1.0/medium,

1.0/soft,

1.0/moderated + 0.85/normal 〉 z3, z4

z2 〈 1.0/thin + 1.0/medium,

1.0/soft + 0.4/hard,

1.0/moderated + 0.96/normal 〉 z5, z6, z7

z0 〈 1.0/thin + 1.0/medium + 0.7/thick,

1.0/soft + 0.4/hard,

1.0/moderated + 0.96/normal + 0.75/high 〉 z1, z2

is not empty at the end after all objects have been through the network of pipes is labeled

with a description of its contents.

From the semantic point of view, a summary is a concept, a set of records which are

similar when rewritten with the terms from the linguistic variables. If the user had to describe

the records in the database using the vocabulary they have provided, they would have given

the same descriptions many times for different records. Instead of repeating these instances,

a summary reflects each description once, keeping track of what records share the same

description.

In the hierarchy structure, a level (i.e., a depth in the tree of summaries) can be associated

with the relative proportion of data a summary describes: the deeper the summary in the tree

(or the lower its level in the hierarchy), the finer the granularity. It follows that the lowest

levels (the leaves) contain the most precise and specific summaries. Such summaries can

be expressed in the same way as candidate tuples: z = 〈α1/d1, α2/d2, . . . , αn/dn, 〉. This

expression is called the intension or intensional expression of the summary. It is an important

point to note that there is only one label per attribute in the leaf summaries (see z3 in Table

2). Moreover, an initial relational tuple can correspond to several leaves.

By contrast, the root of the tree is the most general summary as it covers all the data. The

intensional expression of non-leaf summaries has one or more multi-labeled attributes (e.g.

z1 and z2 ). This depends on the labels in candidate tuples covered by the summaries. Thus,

in these intermediate-level summaries (the non-leaf nodes of the hierarchy tree), the labels

are obtained by just the union of the labels of the children summaries.

4. Description of the querying process

As stated in Section 2, the first step of a database flexible querying process consists in

extending selection criteria. The linguistic variables used in SAINTETIQ already perform the

criteria extension task prior to the actual summarization process. As a consequence, binary

inclusion operators can be used to identify the summaries (and also, the relational data)
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to be considered as results to a query; there is no need for special operators to deal with

the computation-intensive task of extending criteria. This section deals with all aspects of

selection from the expression and meaning of a query to its matching with summaries.

4.1. Expression of a query

This approach to flexible querying intends to answer questions such as “how are thin ma-

terials?” or “how are normal-temperature and soft-hardness materials ?”. In the prototype

developed for querying, the questions are expressed using a user-friendly interface that com-

poses the corresponding query in an SQL-like language. For the two previous questions, the

queries are respectively:

Q1: SELECT temperature, hardness FROM MATERIALS
WHERE thickness IN ("thin")

Q2: SELECT thickness FROM MATERIALS
WHERE temperature IN ("normal") AND hardness IN ("soft")

For a more formal expression of a query, let:

– S be a set of attributes;

– R(S) be the relation whose tuples are summarized;

– Q be a query (e.g., Q1 and Q2 in the above example);

– Ai , i ∈ {1, . . . , n} be an attribute appearing in the query (Ai ∈ S);

– di, j , j ∈ {1, . . . , m} be a label (or descriptor) of attribute Ai , also appearing in the query.

In a query, descriptors (like thin, normal or soft in Q1 and Q2) are called “required charac-

teristics,” and embody the properties that a record must have to be considered as an element

of the answer.

A query also defines the attributes for which required characteristics exist. The set of these

input attributes is denoted by X . The expected answer is a description over a set of other

attributes, denoted by Y . Without further precision, Y is the complement of X relatively to

S: X ∪ Y = S and X ∩ Y = ∅.

Hence a query defines not only a set X of input attributes Ai but also, for each attribute

Ai , the set CAi of its required characteristics. The set of sets CAi is denoted by C , as shown

in the following example.

Example 1. Let Q1 and Q2 be the queries stated above. For each query, the sets are:

Q1: X = {thickness}, Y ={hardness, temperature},

Cthick ={thin} and C = {Cthick}

Q2: X ={hardness, temperature}, Y ={thickness},

Chard ={soft}, Ctemp ={normal} and C = {Chard, Ctemp}.

When users formulate a question, they expect that all and only the data with the charac-

teristics they specify will be returned. The meaning of that question becomes arguable when

many characteristics are expressed for one attribute or when conditions exist for more than

one attribute.
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The first case is illustrated by the question “how are materials which are malleable or soft?”.

The question is interpreted in a disjunctive manner as “how are materials with hardness

in {malleable, soft}?” and not as “how are materials which hardness is both malleable

and soft?”. The equivalent query for the correct interpretation is Q3: SELECT thickness,

temperature WHERE hardness IN (“malleable”, “soft”), interpreted as the condition hardness
= ’malleable’ OR hardness = ’soft’.

The second case is illustrated by the question “how are thick compact materials?”. The

querying process should put forward only data that comply with the characterization on both

thickness and hardness. This precludes, for instance, thick soft materials and thin compact

materials from being selected. The equivalent query for this second question is Q4: SELECT

temperature WHERE thickness IN (“thick”) AND hardness IN (“compact”). The condition

of Q4 is interpreted as thickness = ’thick’ AND hardness = ’compact’.

4.2. Evaluation of a query

This section deals with matching one particular summary against a query to decide whether

it corresponds to that query and can then be considered as a result. The query is transformed

into a logical proposition P used to qualify how one summary relates to the query. P is under

a conjunctive form in which all descriptors appear as literals. As a consequence, each set of

descriptors yields one corresponding clause.

Example 2. The query for “how are the materials which are thin or medium-thickness and

moderated or normal-temperature?” is Q5: SELECT hardness WHERE thickness IN (“thin”,

“medium”) AND temperature IN (“moderated”, “normal”).

In Q5, X = {thickness, temperature}, Cthick = {thin, medium} and Ctemp =
{moderated, normal}. It follows that P5 = (thin ∨ medium) ∧ (moderated ∨ normal).

Let v be a valuation function. The boolean value of P depends on each summary z: a

literal d in P is positively valuated (v(d) = TRUE) if and only if d appears in the intensional

expression (see Section 3.2) of z. Then v(P(z)) denotes the valuation of proposition P in the

context of z.

Let LAi (z) be the set of descriptors that appear in z and concern Ai . An interpretation of P
relatively to query Q leads to discarding summaries that do not satisfy P . But, as shown in the

following example, some summaries that satisfy P might not match the intended semantics

of the query.

Example 3. Table 3 shows the characteristics of materials covered by summary z2 from

Table 2. Suppose z2 is tested for conformance with a query Q6: SELECT temperature

WHERE thickness IN (“thick”, “thin”) AND hardness IN (“soft”, “hard”). P6 = (thick ∨
thin) ∧ (soft ∨ hard) and the function v valuates the variables thin and hard to TRUE as they

Table 3 Example of descriptor
combination Candidate thickness hardness

tb2 thin soft

tc2 medium hard

te1 thin soft

z2 {thin, medium} {soft, hard}
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Fig. 3 Comparison of descriptor sets LAi (z) and Ci

appear in z2. Consequently, v(P6(z2)) = TRUE. However, no material that matches Q6 can be

found. None of the 3 candidates covered by z2 (see table 3) is an answer of Q6.

This example exhibits the necessity to search leaf nodes of summaries which are supposed

to match the query.

While confronting a summary z with a query Q, three cases might occur:

– Case 1: no correspondence. For (at least) one attribute Ai , the set of required labels Ci and

the set of the summary labels LAi (z) have an empty intersection. Thus v(P(z)) = FALSE.

In other words, for one attribute or more, z has no required characteristic, i.e., it shows

none of the descriptors mentioned in query Q.

– Case 2: correspondence. The summary being confronted with query Q matches its seman-

tics. It is considered a result if all attributes are one-valued (the summary is a leaf). The

following expression holds: v(P(z)) = TRUE and ∀i, LAi (z) ⊆ Ci .

– Case 3: no decision can be made. There is (at least) one attribute Ai for which sum-

mary z exhibits one or many descriptors besides those strictly required (i.e., those in Ci ):

∃i,LAi (z) − Ci �= ∅.

The presence of required characteristics in each attribute of z suggests, but does not guar-

antee, that results may be found in the subtree starting from z. Exploration of the subtree

is necessary to retrieve possible results: for each branch, it will end up in situations cate-

gorized by case 1 or case 2. Thus, at worst at leaf level, an exploration leads to accepting

or rejecting summaries; the problem of indecision is always solved.

The situations stated above reflect a global view of the matching of a summary with a

query. They can also be interpreted, from a crisp set point of view, as a combination of

comparisons, still involving LAi (z) and Ci , concerning one required attribute Ai . Figure 3

shows the possible relative positions of LAi (z) and Ci and which case they relate to.

4.3. Selection algorithm

This section applies the matching procedure from the previous section over the whole set of

summaries organized in a hierarchy.

Since the selection should take into account all summaries that correspond to the query,

exploration of the hierarchy is complete. The selection (Algorithm 1) is based on a depth-first

search and relies on a property of the hierarchy: the generalization step in the SAINTETIQ

model guarantees that any descriptor that exists in a node of the tree also exists in each

parent node. Conversely, a descriptor is absent from a summary’s intension if and only if

it is absent from all subnodes of this summary. This property of the hierarchy (which can

be easily seen in Table 2) permits branch cutting as soon as it is known that no result will

be found. Depending on the query, a part of the hierarchy only is explored. In any case, all

relevant results, and only relevant results, are captured.

Algorithm 1 describes the exploration and selection function with the following assump-

tions:
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– function Explore-Select returns a list of matching summaries;

– function Corr corresponds to the matching test reported in Section 4.2;

– operator ‘+’ performs a list concatenation of its arguments;

– function Add is the classical constructor for lists, it adds an element to a list of the suitable

type;

– Lres is a local variable.

Example 4. The result of applying the algorithm on the portion of hierarchy in figure 2 for

the queries stated so far is listed below :

Query Result list Tuples

Q1 〈z5, z7〉 tb2 , te1

Q2 〈z4, z7〉 td1 , te1

Q3 〈z3, z4, z5, z7〉 ta1 , tb1 , tc1 , td1 , tb2 , te1

Q4 〈〉 –

Q5 〈z3, z4, z5, z6, z7〉 ta1 , tb1 , tc1 , td1 , tb2 , tc2 , te1

Q6 〈z5, z7〉 tb2 , te1

4.4. Classification

The classification step is an aggregation of selected summaries according to their interpre-

tation with respect to proposition P: summaries that have the same required characteristics

on all attributes of the input attributes set X form a class that is denoted by B.

Example 5. In this example, query Q5 from example 2 is employed once again. Since each

interpretation of a logical proposition has some boolean variables valuated to true, the set of

those variables is considered. The proposition P5 induced by Q5 (see example 2) admits 9

such sets. But the projection of a relation R(S) on a subset X of its attributes, as done by any
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query (see Section 4.1), may cause duplicate values to appear. When such values exist for a

query, they are grouped in a class as shown in the following table.

Interpretation Relevant summaries Result (hardness)

{thin, moderated} z5 soft

{thin, normal} z7 soft

{medium, moderated} z3, z6 soft, hard

{medium, normal} z4 soft

Aggregation of summaries inside a class (for instance, {medium, moderated}) is a union

of descriptors: for each attribute Ai of output set Y , the querying process supplies a set of

descriptors. This set characterizes summaries that respond to the query through the same

logical interpretation (i.e., summaries that show the same labels for input attributes).

As a response to a query, the process returns a list of classes along with a characterization

of the class for each output attribute. The list is interpreted as follows: while searching for thin
or medium-thickness and normal or moderated-temperature materials, it turned out that:

– there exist thin moderated-temperature materials which are soft;
– there exist medium-thickness moderated-temperature materials which are either soft or

hard;
– . . .

The use of classes has a few benefits:� the results are expressed in an intensional way;� one can easily identify which class accounts for an output label;� it remains possible to provide a single list of output labels by performing a union of labels

from all classes.

4.5. Experimental results

Figure 4 shows a screenshot of the current implementation of the querying process. The data

set used for this specific screenshot describes the images of an image repository based on

their color characteristics. For the expression of a query, Larsen (1999) idea that the query

Fig. 4 Screenshot of the current implementation
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Table 4 Experimental results
Dataset A Dataset B

Number of summaries 131 27,304

Number of tuples 74 14,269

Summary-based querying <1 ms <1 ms

Relational DBMS (SQL) 10 ms–20 ms 50 ms–60 ms

language should be “on the human user’s condition”, that is easy to use, is followed. So,

instead of having the users deal with the language, we let them tell which attributes are

required and for each of these, which fuzzy labels are wanted. The relevant query is formed

by the system and displayed. The list of classes discussed in the previous paragraph can be

seen on the right side of Figure 4 with classes in bold face and output characterizations in

normal style font.

An experiment has been conducted to compare our prototype with standard SQL. The

objective was to roughly evaluate the benefit of using a summary hierarchy. The used pro-

cedure has a few steps. First, summaries from the hierarchy are represented into a database.

Then, the database is queried using SQL while the equivalent queries are answered through

the prototype. Finally, response times are compared for two datasets of different sizes.

Since relational DBMSs (namely Firebird 1.5 and MySQL 4.1 in this test) admit only

one-value attributes, the part of a hierarchy that SQL can process is limited to the leaves

of the tree whereas the prototype considers the whole hierarchy. The summarized relation

R = (thickness , hardness, temperature) is transformed into two tables, SUMMARIES and

LABELS, because of normalization. Each summary is transformed into a tuple 〈 name,

thicknessidx, hardnessidx, tempidx 〉 where name is the primary key and other attributes

point to the corresponding labels in table LABELS.

Although two tables are available, only the table SUMMARIES is queried, with all its

columns indexed. The results in terms of response time are showed in Table 4. The precision

of time measurements is limited by the application programming interface’s and operating

system’s precisions (1 millisecond). The advantage is expected to grow with the size of the

dataset but this still has to be proven.

4.6. From summaries to tuples in an answer

In the summarization process, the rewriting of data into fuzzy labels produces satisfaction

degrees that tell how well a label describes the data. The satisfaction degrees, which are part

of a summary’s intension, are not used in this paper. But the qualitative information carried

by these degrees is interesting, particularly to make a better distinction between results.

Thus, a fully flexible querying process with a ranking of results can be easily built on our

approach. Indeed, the summaries hierarchy can be considered as a general index over the

data, which can be used to quickly reduce the search space. Thus, a first step (the proposed

querying tool) gives answer summaries (leaves of the hierarchy) to a query expressed with

linguistic labels. Then a second step retrieves tuples from the summaries extension. Finally,

the degrees attached to each tuple can be taken into account to compute a total satisfaction

degree of the tuple to the query. This second step is the subject of a future paper.

An additional enhancement would deal with a quantitative aspect. Besides satisfaction

degrees, the SAINTETIQ model provides frequency and proportion data attached to descriptors

and candidate tuples (Raschia, 2001). By using that data, we will be able to express more
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information in a response, for instance the response in example 4 might be “medium-thickness

moderated-temperature materials are either soft or hard but only a small part of them is hard”.

Thus, taking advantage of the SAINTETIQ summarization process, our tool can perform

flexible querying not by applying fuzzy operators on classical data, but by applying boolean

inclusion operators on the summaries, i.e., on fuzzy data. This is the main distinctive

features of our querying tool, with respect to other flexible querying mechanisms presented

in Section 2.

5. Conclusion and future research

In this paper, a querying tool for the summarization model SAINTETIQ has been proposed. It

allows end-users to efficiently retrieve summaries, and exploits the hierarchical structure of

the summaries produced by SAINTETIQ.

From a technical point of view, it performs a boolean matching between the summaries

and the query on the basis of linguistic labels from a user-defined vocabulary. It is therefore a

classical boolean querying tool whose novelty lies in the use of summaries and in the efficient

use of a hierarchy. The querying machinery, as well as a user-friendly interface have been

developed and tested on toy examples in order to validate the method.

Then, as it is easy to obtain tuples from summaries, and to rank the tuples according to

their membership degree to the summaries, it has been shown that the method can also be

considered as a flexible querying tool on a relational database. The flexibility fully relies in

the summarization process, and this is one of the reasons why the process is efficient.

Besides, this work is a first attempt at querying the summaries, and the richness of the

framework is far from being entirely exploited. Several future developments are under con-

sideration. Among them, the extension of the querying language, adding SQL-like functions

as count(), the possibility to use a wider vocabulary than the one used in the summarization

process, etc.

Above all, expressiveness is the main point future work will focus on as it will eventually

allow imprecision in not just the representation of information but also in user queries. It might

also cover preferences or priorities in queries as mentioned by Rocacher in Rocacher (2003).

An answer from the querying process, for example “thin materials have a soft hardness and

a normal temperature”, is a description of data. The embedding of the description operation

(and others from summary-based querying) as an extension of SQL is a long-term future

project.

From the conjunctive normal form expression of queries, determining the reasons of a

search failure is simple (see 4.2). From then, an interaction with the user will permit us to

implement one of the cooperative behaviors (corrective answers) surveyed by Gaasterland

in Gaasterland et al. (1992). The reasons of a failure, that is the fuzzy labels in the query

that cause the failure, may be displayed so that the user could ask a new query based on the

previous one.
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José Galindo, Juan Miguel Medina, Pons, Olga, & Cubero, Juan C (1998). A server for fuzzy SQL queries.
In Troels Andreasen, Henning Christiansen, and Henrik Legind Larsen, (Eds.), Proceedings of the 3rd
Int. Conf. on Flexible Query Answering Systems, Roskilde, Denmark, volume 1495 of Lecture Notes in
Artificial Intelligence LNAI, (pp. 164–174). Springer.

Kacprzyk, Janusz (1999). Fuzzy logic for linguistic summarization of databases. In Proceedings of the 8th
International Conference on Fuzzy Systems (FUZZ-IEEE’99), Vol. 1 (pp. 813–818).

Kacprzyk, Janusz, & Zadro«zny, Slawomir (2001). Computing with words in intelligent database querying:
standalone and internet-based applications. Information Sciences, 134, 71–109.

Larsen, Henrik Legind (1999). An approach to flexible information access systems using soft computing. In
Proceedings of the 32nd Hawaii Int. Conf. on System Sciences, Vol. 6.

Lee, Do Heon, & Kim, Myoung Ho (1997). Database summarization using fuzzy ISA hierarchies. IEEE Trans.
on Systems, Man and Cybernetics-Part B: Cybernetics, 27, 68–78.

Raschia, Guillaume (2001). SAINTETIQ: une approche floue pour la génération de résumés à partir de bases
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