

Journal des Sciences Pour l’Ingénieur. N° 7/2006, pages 54 à 63

Semantics-based Profiles Modeling and Matching for
Resources Access

M. Chevalier
 *

, C. Soulé-Dupuy
*
, P. L. Tchienehom

*

*
IRIT, 118 route de Narbonne, 31062 Toulouse, France

RÉSUMÉ. L’hétérogénéité des ressources (informations, utilisateurs, dispositifs matériels, etc.) mises à disposition a

soulevé le problème de la définition d’un modèle générique, qui pourrait être utilisé comme base de description de

ressources dans différentes applications. Dans cet article, nous proposons un modèle générique de profil qui décrit la

structure logique, le contenu et la sémantique de ressources non prédéfinies. Le but est d’expliciter la sémantique des

éléments descriptifs d’un profil et d’utiliser cette sémantique pour définir des moyens de déduction automatique d’éléments

de sémantique compatible entre profils décrits différemment. La sémantique définie n’est pas limitée à une application

particulière (elle peut être partagée) et doit donc permettre de faire interopérer des profils issus éventuellement

d’applications différentes. Afin d’évaluer l’interopérabilité de profils, nous définissons un algorithme d’appariement

flexible et nous discutons des résultats de son implémentation.

ABSTRACT. Heterogeneity of resources (information, users, hardware devices, etc.) placed at disposal has raised the

problem of defining a generic model, which could be used as a basis for describing resources in various applications. In this

article, we propose a profile generic model, which describes the logical structure, the contents and the semantics of non

predefined resources. The goal is to clarify the semantics of profiles descriptive elements and to use this semantics for the

definition of means for an automatic deduction of elements with compatible semantics between profiles described differently.

The defined semantics is not limited to a particular application (it could be shared) and should then allow interoperability

between profiles models coming eventually from different applications. In order to evaluate profiles interoperability, we

define a flexible matching algorithm and we discuss the results of its implementation.

MOTS-CLÉS : Sémantique, interopérabilité, profil, modèle générique, appariement, accès à des ressources.

KEYWORDS: Semantics, interoperability, profile, generic model, matching, resources access.

1. Introduction

The development of internet, especially the

World Wide Web, as well as intranets and numeric

environments have led to a heterogeneous

important amount of resources placed at disposal. A

resource can be of various natures like: hardware

device (mobile phones, PDA, captors, etc.),

software device, information (a document for

instance), collection of information, user, and so

on. There is a real need of interoperability or

cooperation between resources descriptions (called

profiles) in applications, in order to realize a

specific task: finding information that meet a user’s

need; sending messages (e-mail, sms, mms) to a

user for advertisements or for preventing him from

a breaking entrance of his house; and so forth. In

this context, one solution could be to

homogenously describe the different resources that

have to cooperate. However, the diversity and

heterogeneity of resources certainly lead to a great

disparity in their description.

In order to improve this cooperation, it is

essential to defined models which have at the same

time the properties of extensibility, flexibility, re-

usability and interoperability. For that, semantics

have to be associated to the description of resources

and should enable a coherent cooperation between

different models, by using metadata. For instance,

users interested in “recent information” could have

their own definition of this notion. Thus, their

search results should be strongly linked to the

interpretation of the semantics they have associated

to this notion.

In this paper, we propose a model for the

description of non predefined resources (profile

model) that has a double dimension: generic and

semantic. The generic aspect provides us with a

homogeneous framework of description and the

semantic part enables us to mitigate the disparities

or even the discrepancies which remain at the

profiles instances level, in order to improve profiles

interoperability in resources access applications.

Let us note that the semantics is also defined

generically and then instantiate in profiles

examples. Moreover, we also defined a method for

profiles matching, based on their semantics. This

method deduces couples of descriptive profiles

elements, which have compatible semantics.

Chevalier et al. 55

2. Literature review

Resources access, in this paper, represents a

broader view of information access [2] where

resources are not limited to information

(documents) and users but can be extended to any

kind of elements (person, thing or action)

depending on the application: documents parts,

documents collections, journals articles, hardware

devices, user’s context, users’ group, etc.

Information access techniques help an individual to

find information that meets his needs. We can

gather them in two main groups: pull techniques or

information retrieval techniques [18] [4], which

need an explicit request of an individual and push

techniques or filtering or recommendation

techniques [15] [17], which do not need an explicit

demand to return information to users.

These techniques are based on resources models

that we called profiles. In traditional information

access applications, profiles semantics is implicit or

strongly linked to the application where they have

been defined. In general, profiles models can be

divided in three categories:

- attribute-value model [21] where attributes are

independent and not structured. In this model, we

cannot have two attributes with the same name;

- logical structure based model with an

associated contents [5] [7] where attributes are

structured and identified by a path. Two attributes

can then have the same name but different

associated paths;

- semantics-based model [6] [13] where an

explicit semantics is associated to the logical

structure elements by using a metadata language.

The first two types of models do not give any

explicit information on profiles semantics and

hence reduce or even exclude any cooperation

between profiles, especially described by different

applications. In order to solve those problems of

interoperability, we do need extensible, flexible, re-

usable and interoperable models [3]. These

properties could be achieved with generic [14] and

semantic [11] profiles models. For Instance, there

are models that aim at describing the semantics of

user’s context through the capabilities of their

devices like: CC/PP (Composite

Capability/Preference Profiles) [13] and CSCP

(Comprehensive Structured Context Profiles) [6].

The basic idea is to use metadata languages, which

will bridge two different resources descriptions

thanks to the analysis of their semantics defined by

metadata.

The specificity of the profile model proposed in

this paper is its generic and semantic aspect.

Moreover, the model allows the description of non

predefined resources. We also define a flexible

method for profiles matching in resources access.

This method enables an automatic deduction of

profiles elements pairs of similar or compatible

semantics between two profiles. It will also allow

the evaluation of a similarity measure between

elements pairs and afterward between profiles.

This method aim at reducing incoherence and

silence related to a similarity based only on logical

structure elements, especially at an inter

applications level.

3. Modeling of profiles for resources access

In this section, we present the proposed profile

generic model for non predefined resources: the

logical structure, the contents and the related

semantics. Thereafter, we describe profiles

instances and explain the interest of profiles

interoperability for profiles matching in resources

access.

3.1. Profile generic model

The figure 1 presents the profile generic model

(in UML [16]) proposed. It results from the

analysis of various systems, in order to deduce a

general model from them. The existing systems are

conceived to achieve particular goals according to

specificities of their context: recommendation of

Web pages according to bookmarks [20], mails

filtering [12], electronic trade [10], exploitation of

user’s context [6] [13], etc. Contrary to these

systems, our model is enough general to be used by

various applications.

The profile generic model of figure 1 is

subdivided into four levels: the profile logical

structure, the profile contents, the profile logical

structure semantics and the profile contents

semantics.

3.1.1. Logical structure and contents

The logical structure presents the general

structure of a profile. This structure is in the form

of a hierarchy of re-usable elements

(ReusableElement class) that characterize it. This

hierarchy is a tree where nodes or profile elements

can be either profiles (instances of class Profile) or

attributes (instances of class Attribute) that

describes characteristics of a given profile in the

hierarchy (which is the nearest profile in the

hierarchy). There are two types of attributes: the

class NonLeafAttribute that represents categories of

profiles elements (for example the attribute user’s

preferences can be composed of others attributes

like: language, size and date) and the class

56 Journal des Sciences Pour l’Ingénieur. N° 7/2006

LeafAttribute that describes leaf attributes of the

logical structure to which one can affect values.

Hence, a re-usable element can be an instance of

either class Profile, NonLeafAttribute or

LeafAttribute.

The profile contents (see class ContentsElt),

associated to leaf attributes, is composed of lists of

value-weight pairs. These lists can contain only one

pair of value-weight (for example the attribute

document size) or several pairs of value-weight (for

instance the attribute document key word). The

value is the real contents of the attribute and the

weight is a numeric value that describes at which

point the value represents the attribute. For

instance, if a user prefers english documents to

french documents, we should define weights that

represent that preference. Note that contents

elements representation here follows the vector

space model.

Logical structure Logical structure semantics

Contents Contents sémantics

-name
-description

Profile

-name
-description

Attribute

ReusableElt

NonLeafAttribute LeafAttribute

-value
-weight

ContentsElt

-name
-description

Resource

-name
-description

Concept

-name
-description

ValueType

-comparisonOperator
-comparisonValue

LogicalExpression

0..*

1..*

1..*

0..*

1..*

-describes

1..1

1..*

-represents

0..1

1..1

-isAssociatedTo0..*

0..*

-isModelledBy

1..1

1..*

-isExplainedBy

0..1

-name

ResourcesLink

0..*
0..*

-name
-indicator

ConceptsLink

0..*
0..*

-name

ValuesTypesLink

0..*
0..*

-name

LogicalOperator

0..*
0..*

1..1
-isOfType0..*

Figure 1. Profile generic model

3.1.2. Logical structure semantics and contents

semantics

The generic model will also enable us to clarify

the semantics of a profile logical structure and

contents. The logical structure semantics of the

generic model clarifies what a profile and an

attribute represent. Profile semantics is the

description of a category of resource (information,

user, hardware devices, etc.) in a given context

represented by the class Resource. The interest of

this class Resource is to enable the re-usability of

existing profiles models of a given category for the

description of new ones. Attribute semantics

clarifies the characteristic that an attribute describes

represented by the class Concept. Thus, attributes

will be related to generic concepts that come

generally from existing metadata languages like:

Dublin Core, Wordnet, etc. For instance, the

attribute information_language of a document can

be related to the metadata dc:language of the

Dublin Core.

On the other hand, contents semantics of a

profile clarifies the representation model or

datatype (instance of class TypeElement) of a leaf

attribute contents: integer, string, date, dates

patterns (ddmmyyyy, mmyyyy, etc.), addresses

patterns, and so on (see also XMLSchema element

type). Moreover, contents semantics can refine the

meaning of a contents element thanks to logical

expressions. For example, we can express the fact

that a user is interested in information published

before a given date and after another one. We can

then combine logical expressions with the logical

operators: AND, OR

Semantics is represented in the generic model

by the classes: Resource, Concept, ValueType and

Chevalier et al. 57

LogicalExpression as well as by classes of

associations (ResourcesLink, ConceptsLink,

ValuesTypesLink, LogicalOperator) whose

instances clarify the semantic links (subsumption,

equivalence, for instance) that exist between

instances of classes previously cited. This

semantics is based on metadata languages (Dublin

Core, RDF, RDFS, OWL, XMLSchema, etc.) that

could be shared among profiles.

The interest of using a generic model for

defining a given profile is that it proposes a basic

framework for the description of several classes of

profiles. Instances of parts of the proposed generic

model are illustrated in [8]. In the following

section, we describe characteristics of complete

profiles instances and we also present the

specificities of profiles interoperability based on the

semantic part of the profiles.

3.2. Profiles instances and profiles interoperability

UML is a semi-formal language that has helped

us to get a better visual aspect of our generic

model. On the other hand, we have chosen RDF-

like technologies (RDF/RDFS/OWL: cf.

www.w3c.org) for the description of profiles

instances. These technologies are formal languages

that have similar objectives than description logic

languages: reasoning on terminologies or

taxonomies. RDF-like formalisms are more adapted

for semantic descriptions because they provide us

with existing and re-usable predicates like:

disjunction (owl:disjointWith), equivalence

(owl:equivalentClass), equality (owl:sameClass),

subsumption (rdfs:subClassOf et rdf:type), etc.

Moreover, using these technologies enable,

afterwards, the validation of our model with an

existing application programming interface (API)

for the semantic web called Jena that are able to

interpret RDF/RDFS/OWL languages. Note that

UML and RDF are not disjoint languages. The

basic triple [subject, predicate, object] of RDF

exists implicitly in UML and in any other language.

Thus, associations between classes and relations

between a class and its properties can be clarified

with RDF triples.

3.2.1. Profiles instances

The figure 2 illustrates two profiles: a user

profile and an information profile. For each profile,

we describe its logical structure, its contents, its

logical structure semantics, and its contents

semantics. This visualisation is done thanks to a

tool that we have implemented for the construction,

the visualisation and the matching of profiles that

correspond to our generic model.

The logical structure and the contents of a

profile are always described by a tree. The graph

structure is obtained only when semantic elements

are added. For instance, several logical structure or

contents elements can be linked to the same

semantic element. Moreover, semantic elements

can be linked to each other by following a non

hierarchical form. In figure 2, attributes

interests_centers, music and films of the profile

user_profile_y represent the same concept

dc:subject.

Figure 2 also illustrate the re-usability of

metadata coming from different namespaces like:

Dublin Core, Semantic Profile Namespace (which

is the namespace that we have created for this paper

proposed framework), etc. These namespaces are

respectively represented by the prefixes dc, sp:, etc

3.2.2. Profiles interoperability

The re-usability of metadata will ease models

interpretation by mitigating the re-definition of

concepts or datatypes and hence by reducing

creation of semantic links of equivalence or

equality between concepts and datatypes.

Moreover, those metadata and links between them

will define a shared semantics among profiles. This

semantics will help to deduce elements of similar

semantics, even if they do not have the same name.

It will also allow reducing incoherence due to

elements that have different meanings but identical

names. Moreover, the semantics will define a level

of interoperability between profiles (or interaction

capacity), which will correspond here to the

number of elements of compatible semantics. In

figure 2 for instance, if we look at the logical

structure semantics of the two illustrated profiles,

we note that there are attributes that shared the

same concepts between those profiles. Let us take

the leaf attributes datesPreferences and

information_date of profiles user_profile_y and

information_profile_x respectively, these attributes

represent the same concept dc:date but if we look

at their contents semantics, they are different. What

should be interesting here, is to be able to deduce

that those attributes can be compared thanks to

some transformations that should have been clearly

identified: here the transformation of a date format

mmyyyy to a year format yyyy; and contents

representation change: the contents element

(02/2003, 1.0) should be transformed to contents

element (recent, 1.0). These transformations are

described in the following section.

58 Journal des Sciences Pour l’Ingénieur. N° 7/2006

Logical structure Logical structureLogical structure semantics

Contents ContentsContents sémantics

Figure 2. Profiles instances and interoperability: logical structure, contents and semantics

4. Matching flexibility for resources access

Describing the semantics of profiles logical

structure and contents is a necessary step to an

optimal exploitation of these last. In resources

access, this exploitation is mainly based on profiles

matching. In order to guarantee a coherent

matching, we have to automatically deduce

elements pairs of compatible semantics between the

profiles to be compared. For that purpose, we have

defined and implemented an algorithm, which is

presented in the next section.

4.1. Algorithm for compatible semantics elements
detection

This algorithm is based on profiles

interoperability that itself is linked to the analysis

of logical structure and contents semantics of

profiles to be compared. Analysing the semantics

related to logical structure and contents are both

necessary because leaf attributes can represent the

same concept while being associated to contents

elements of different datatypes. For instance,

attributes datesPreferences and information_date of

figure 2. All the same, leaf attributes where

elements are of the same datatype can represent

different concepts. For instance, the language of a

piece of information and the user’s interests centres

contents elements, can be related to the same

datatype (string, for example) even though they

describe different characteristics: dc:language vs

dc:subject, for example.

The prior step to profiles matching is the

selection of elements of compatible semantics

between them that can be compared. Figure 3

shows the general algorithm for this purpose, with

its different steps and its different inputs and

outputs. The steps of the algorithm are related: to

the logical structure and its associated semantics

analysis; and to the contents and its associated

semantics analysis. These steps can also be divided

in three classes: steps related only to graph patterns

or paths (steps 1, 2, 4, 5); steps related to reasoning

thanks to some verification of compatibility (steps

3, 6, 7) and finally the transformations step (step 8).

Chevalier et al. 59

All these steps use queries (or rules) written in

SPARQL [19], an RDF query language.

Inputs of the algorithm are two profiles to be

compared and outputs are a list of attributes pairs of

compatible semantics with the linear combination

of contents of each attribute. These attributes are

always leaf attributes because they are the one

related to contents elements. The matching of

profiles or non leaf attributes is the result of an

aggregation of leaf attributes matchings that

compose it.

The logical structure and the associated

semantics analysis allows the deduction of leaf

attributes pairs that represent compatible concepts.

This analysis defines a kind of necessary rule for

the matching of two attributes coming from

different profiles. Afterwards, we proceed to

contents and associated semantics analysis that

completes the previous one and makes it somehow

sufficient. Finally, the linear combinations obtained

at the end of the algorithm, will be used to measure

the similarity degree between attributes of each

couples by using cosine formula for instance.

Profile_1 Profile_2

pairs list of leaf attributes of compatible semantics +
linear combinations of their contents représentation :

lcv={ (f1+relt1+rexp1, f2+relt2+rexp2), ... }

1. Searching List of Leaf Attributes

2. Searching associated Concepts

3. Verification of Concepts Compatibility

Logical
structure and
associated
semantics

analysis

4. Searching Contents Linear Combinations

5. Searching Contents Values Datatypes

6. Verification of Contents Datatypes Compatibility

Contents and
associated
semantics
analysis

7. Verification of Values Semantic Compatibility

8. Transformations

List of leaf attributes of each profiles, respectively named:
l1={f1, ...,fi, fj} and l2={f2, ..., fm, fn}

list of pairs « leaf attribute -concepts » of each profiles:
lc1 ={(f1,c1), ..., (fi,ci), (fj,cj)} et lc2={(f2,c2), ..., (fm,cm), (fn,cn)}

list of pairs that combines profiles leaf attributes where
their related concepts are compatible : lc={ (f1, f2), ...}

list of pairs « leaf attributes + linear combinations (relt and
rexp)» : lcv ={ (f1+relt1+rexp1, f2+relt2+rexp2), ... }

list of pairs « leaf attributes + linear combinations (relt and rexp)+
datatypes (telt et texp) » :
lcvt ={ (f1+relt1+rexp1+telt1+texp1, f2+relt2+rexp2+telt2+texp2), ... }

list of pairs « leaf attributes + linear combinations + values types » of
compatible semantics :
lcvt ={ (f1+relt1+rexp1+telt1+texp1, f2+relt2+rexp2+telt2+texp2), ... }

list of pairs « leaf attributes + linear combinations + values types»
of compatible semantics :
lcvt ={ (f1+relt1+rexp1+telt1+texp1, f2+relt2+rexp2+telt2+texp2), ... }

Figure 3. General algorithm for profiles analysis: logical structure, contents and semantics

4.1.1. Logical structure and associated semantics

analysis

Analysing the logical structure and the

associated semantics consists in:

a. searching the list of leaf attributes with the

associated concepts for each profile to be

compared;

b. verifying the concepts compatibility associated to

any possible pair of leaf attributes of profiles to be

matched. When leaf attributes concepts of a pair are

different (come from different namespaces and/or

have different names), one can check whether there

are equivalent or identical. For that, we use a

SPARQL query, similar to the one describe in table

1. Note that the key word UNION shows an

alternative match, which means that at least one of

the graph pattern (triple) involved, must be found

for the query results. The key word FILTER defines

a selection. On the other hand, properties

owl:equivalentClass and owl:sameAs are defined as

being symmetric and the values cf1 and cf2 are

concepts names of given leaf attributes f1 and f2 of

profiles profile_1 and profile_2 respectively. The

file Concepts.rdf is a file that contains concepts and

60 Journal des Sciences Pour l’Ingénieur. N° 7/2006

relations between them. It can be the result of a

union of different files describing concepts related

to a specific domain.

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX sp: <http://www.irit.fr/.../SemanticProfile#>

SELECT ?c1 ?c2

FROM Concepts.rdf

WHERE {

 ?c1 rdf:type sp:Concept .

 ?c2 rdf:type sp:Concept .

 { ?c1 owl:equivalentClass ?c2 } UNION { ?c1 owl:sameAs ?c2 } .

FILTER ((?c1=<"cf1"> || ?c1=<"cf2">) && (?c2=<"cf1"> || ?c2=<"cf2">)) .

 };

Table 1. Verification of concepts compatibility.

4.1.2. Contents and associated semantics analysis

For contents and associated semantics analysis,

we consider that all contents element of a leaf

attribute are of the same datatype, which means that

they are modelled by the same instance of class

ValueType. All the same, instances of class

LogicalExpression that clarify contents elements of

a given attribute are also of the same datatype. This

is due to the fact that a leaf attribute is an

elementary descriptive element and hence, has a

homogeneous content. Thus, analysing contents

and the associated semantics of a necessarily

compatible (which means that the semantics of their

concepts is compatible) pairs of leaf attributes

consists in:

a. searching linear combinations (or vectorial

representation) for representing contents associated

to each attribute of a given pair: one representation

is related to contents elements and the other to

associated logical expressions that clarify (or

explain) the meaning of these contents elements;

b. searching contents datatypes associated to

each attribute of a pair: one is related to contents

elements values and the other to the associated

logical expressions;

c. verifying contents datatypes compatibility

associated to each leaf attribute of a necessarily

compatible pair: this verification is based on a

library of datatypes transformations methods.

Given two datatypes tf1 and tf2 of leaf attributes f1

and f2, we check whether there is a method for

changing a value of datatype tf1 to a value of

datatype tf2 or conversely. The method name is a

concatenation of the names of the two datatypes.

We can also verify that compatibility by analysing

semantic links that exist between datatypes.

However, this alternative can be time consuming

and useless if the transformation method does not

exist;

d. verifying values semantic compatibility of

contents elements associated to each leaf attribute

of a necessarily compatible pair: this verification

improve the flexibility of the analysis by using a

file named ContentsValues.rdf, which is a result of

the union between various taxonomies or

terminologies described with RDF formalism like

Wordnet RDF/OWL representation [1]. An

example of that kind of verification is described in

table 2. Note that the properties

sp:isATranslationOf, sp:isASynonymOf and

sp:isAnAbbreviationOf are defined as being

symmetric. The symmetry helps to find symmetric

triples, even if those triples do not exist physically

in the queried file. val1 and val2 are two values of

contents elements associated to leaf attributes f1

and f2 of profiles profile_1 and profile_2

respectively.

This type of query is useful because we can

have for example the values fr and french that

represent the same semantics, since fr is an

abbreviation of french. This verification will allow

defining a vectorial representation that is

semantically common to attributes to be compared

and that will enable us to evaluate, more faithfully,

the similarity between these attributes.

e. identifying transformations to be performed

on contents elements for the matching: the

verification of contents datatypes compatibility can

lead to some transformations, necessary for the

matching. For example, if we want to compare

attributes datesPreferences and information_date of

figure 2, we do need to use a method that will

extract a year from a date format.

On the other hand, we generally need to verify

the contents vectorial representions of each leaf

Chevalier et al. 61

attribute as well as their dimension. We can have a

disjunction, an inclusion or an overlapping between

values of the vectorial representations of attributes

to be matched. In order to perform this matching, it

could be necessary to proceed to:

- a vectorial representation change by an

extension of values of the different attributes

contents elements, in order to describe them in the

same dimension;

- a vectorial representation change by a change

of values if at least one of the attribute to be

compared can be represented in two different

vectorial spaces. This is the case when attributes are

clarified with logical expressions.

An example of those vectorial transformations

is illustrated in the next section.

PREFIX sp: <http://www.irit.fr/.../SemanticProfile#>

SELECT ?v1 ?v2

FROM ContentsValues.rdf

WHERE {

 { ?v1 sp:isATranslationOf ?v2}

 UNION { ?v1 sp:isASynonymOf ?v2 }

 UNION { ?v1 sp:isAnAbbreviationOf ?v2 } .

FILTER ((?v1=<" val1"> || ?v1=<" val2">) && (?v2=<" val1"> || ?v2=<" val2">)) .

 };

Table 2. Verification of contents values compati

4.1.3. Example of contents representation

transformations

Given two attributes semantically compatible

(according to the compatibility of their concepts

and datatypes):

- datesPreferences which contents is {(recent,

1.0), (notRecent, 0.5)}. Where the value recent

represents a restriction to dates greater or equal to

the year 2003 and the value notRecent represents a

restriction to dates less than the year 2003;

- information_date which contents is the date

(02/2003, 1.0).

The results of the contents analysis returns two

linear combinations for these attributes: one related

to contents elements and the other to logical

expressions. Thus:

- for attribute datesPreferences (named afs), we

obtain:

afsexp = 1.LT2003 + 1.GE2003

afselt = 0,5.notRecent + 1.recent

- for attribute information_date (named am), we

initially get amexp = 1.GE2003 after the extraction

of the year from the date 02/2003. Then, we

proceed to a change of this vectorial representation

and we finally obtain:

amexp = 0.LT2003 + 1.GE2003

amelt = 0.notRecent + 1.recent

Note that GE stands for « >= » and LT for « < ».

These two attributes will be compared by using

the representation related to contents elements afselt

and amelt and by applying the cosine formula for

instance. An aggregation method of leaf attributes

matching in order to compare profiles are described

in [9] and evaluated in [22].

4.2. Algorithm evaluation

We have evaluated the proposed algorithm

based on our profile generic model, in comparison

to methods based on an attribute-value profile

model and on a logical structure profile model.

For that, we have defined 10 users’ profiles

describing users’ interests, preferences (dates,

languages, sizes of documents) and demographic

data (name, gender, professional institution). Users’

profiles are described by logical structure, contents

and semantics.

We have also described documents of the CLEF

evaluation campaign which contains articles of the

year 1994, for journals: Swiss National News

Agency (SDA), Le Monde (LeMonde) and Los

Angeles Times (LaTimes). Table 3 describes some

properties of these collections.

The RDF description of the CLEF documents

follows their Document Type Definition (DTD) for

the logical structure. Contents have been extracted

from documents and the semantics related to

logical structure and contents elements have been

defined after looking at some documents of each

62 Journal des Sciences Pour l’Ingénieur. N° 7/2006

collection. The DTD of each collection is different

and described several aspects of the documents

(identification, title, authors, date, paragraphs, and

so on) but the semantics of some elements are

similar. For example, authors of articles are defined

by the words: AU for SDA articles, AUTHOR for

LeMonde articles and BYLINE for LaTimes

articles. These logical structure elements

(attributes) can be related to the concept dc:creator

of the Dublin Core for instance.

Collections SDA 94 LeMonde 94 LaTimes 94
Size 82.1 Mo 156 Mo 420 Mo

Number of documents 43 178 44 013 113 005

Language French French English

Table 3. Description of collections SDA 94, LeMonde 94 and LaTimes 94

The database of profiles obtain is enough

heterogeneous for our experiments. The

experimentations consist in detecting the number of

leaf attributes pairs of compatible semantic among

those profiles. For that, we first apply our

algorithm. Then, we consider the case of an

attribute-value model where attributes of similar

semantics are leaf attributes that have the same

name. Finally, we consider the case of a logical

structure model where attributes of similar

semantics are leaf attributes that have the same

name and that have also the same path in the logical

structure. The comparative results of experiments

are presented in table 4. Note that the model of

profile proposed in this paper is called Semantic

Profile.

Profiles models Semantic Profile Attribute-value Logical structure

Average Number of attributes

pairs of similar semantics

4,84 0,92 0,79

Table 4. Comparative results for the detection of attributes of similar semantics

We can notice that our algorithm outperforms

the others. The semantics added acts as a shared

part between profiles and allows detecting pairs that

do not have the same name but share the same

semantics, which is not possible with an attribute-

value or logical structure model. On the other hand,

attributes that have the same name, do not share

automatically the same semantics. So, with respect

to that and to the manual verification of some

attributes pairs returned, we can say that the pairs

detected with our algorithm are more trustworthy

than those obtained with the others models.

5. Conclusion and discussions

In this paper, we have proposed a profile

generic model and an analysis method for profiles

matching based on semantics. The aim is to provide

applications with flexibility for profiles modeling

and for profiles matching as well. We have

 evaluated the proposed analysis algorithm for

profiles matching with a java API called Jena,

which enable us to combine a programming

language java with an RDF query language

SPARQL. The results shows that we can

automatically deduce more trustworthy attributes

pairs of similar semantics compare to methods

based on an attribute-value model or a logical

structure model.

For the future work, we plan to define how we

can take into account semantic links, not always

symmetric, for compatibility verification like the

subsumption link with predicates rdf:type and

rdfs:subClassOf. These predicates are transitive.

For instance, the substitution of the value vehicle

by the value car should imply a weight

modification. All the same, taking into account

subsumption links (rdf:type and rdfs:subClassOf)

on concepts instances that represent attributes,

require to define a particular reasoning procedure

for their interpretation in profiles analysis.

Chevalier et al. 63

6. Références

[1] M. v. Assem, A. Gangemi, G. Schreiber, editors.

RDF/OWL Representation of WordNet. Editor's

Draft,

http://www.w3.org/2001/sw/BestPractices/WNET/w

n-conversion.html#querying, 2006.

[2] R. Baeza-Yates, B. Ribeiro-Neto. Modern

Information Retrieval, First edition, Addison Wesley,

ISBN 0-201-39829-X, 1999.

[3] T. Berners-Lee, J. Hendler, O. Lassila. The semantic

web, Scientific American. 2001.

[4] M. Boughanem, C. Chrisment, C. Soulé-Dupuy.

Query modification based on relevance

backpropagation in adhoc environment, Information

Processing \& Management Journal, Elsevier

Science, vol. 35, p. 121-139, 1999.

[5] M. Bouzeghoub, D. Kostadinov. Personnalisation de

l'information: aperçu de l'état de l'art et définition

d'un modèle flexible de profils, COnférence en

Recherche d'Informations et Applications

(CORIA'05), p.201-218, 2005.

[6] S. Buchholz, T. Hamann, G. Hubsch. Comprehensive

Structured Context Profiles (CSCP): Design and

Experiences, Workshop on Context Modeling and

Reasoning (CoMoRea'04), p. 43-47, 2004.

[7] B. Chang, J. Kesselman, R. Rahman. Document

Object Model (DOM) Level 3 Validation

Specification Version 1.0, W3C Recommendation,

http://www.w3.org/TR/2004/REC-DOM-Level-3-

Val-20040127/, 2004.

[8] M. Chevalier, C. Soulé-Dupuy, P. L. Tchienehom.

Profiles Semantics and Matchings Flexibility for

Resource Access, International IEEE conference on

Signal-Image Technology & Internet-based Systems

(SITIS'05), p. 224-231, 2005.

[9] M. Chevalier, C. Soulé-Dupuy, P. L. Tchienehom. A

profile-based architecture for a flexible and

personalized information access, IADIS International

Conference (IADIS/WWW Internet), vol 2, p. 1017-

1022, IADIS - ISBN 972-99353-0-0, 2004.

[10] Y. H. Cho, J. K. Kim, S. H. Kim. A personalized

recommender system based on web usage mining and

decision tree induction, Expert System with

Applications, vol. 23, n°3, p. 329-342, 2002

[11] P. Dolog, W.Nejdl. Challenges and benefits of the

Semantic Web for User Modelling, In proceeding of

AH'03, 2003.

[12] D. Goldberg, D. Nichols, B. M. Oki, D. Terry.

Using Collaborative Filtering to weave an

Information Tapestry, Communications of the ACM,

Information Filtering, vol. 35, n°12, p. 61-70, 1992

[13] G. Klyne, F. Raynolds, C. Woodrow, H. Ohto, J.

Hjelm, M. H. Butler, L. Tran, editors. Composite

Capability/Preference Profiles (CC/PP): Structure

and Vocabularies 1.0, W3C Recommendation,

http://www.w3.org/TR/CCPP-struct-vocab/, 2004.

[14] A. Kobsa. Generic User Modelling Systems, User

Modelling and User-Adapted Interaction, vol. 11, p.

49-63, 2001.

[15] M. Montaner, B. Lopez, J. L. D. L Rosa. A

Taxonomy of Recommender Agents on the Internet,

Artificial Intelligence Review, vol. 19, pages 285-

330, Kluwer Academic Publishers, 2003

[16] P. A. Muller, N. Gaertner. Modélisation objet avec

UML, Deuxième édition, Eyrolles, ISBN 2-212-

09122-2, 2000.

[17] M. Pazzani. A Framework for Collaborative,

Content-Based and Demographic Filtering, Artificial

Intelligence Review, 1999.

[18] J. Pitkow, N. Schütze, T. Cass, R. Cooley, D.

Turnbull, A. Edmonds, E. Adar, T. Breuel.

Personalized Search: A contextual computing

approach may prove a breakthrough in personalized

search efficiency, Communications of the ACM, vol.

45, No. 9, p. 50-55, 2002.

[19] E. Prud'hommeaux, A. Seaborne. SPARQL Query

Language for RDF, W3C Working Draft,

http://www.w3.org/TR/2004/rdf-sparql-query/, 2005

[20] J. Rucker, M. J Polanco. Siteseer: Personalized

Navigation for the Web, Communications of the

ACM, vol. 40, n°3, pp. 73-75, 1997.

[21] B. N. Schilit, N. L. Adams, R. Want. Context-aware

computing applications, In IEEE Workshop on

Mobile Computing Systems and Applications, 1994.

[22] P. L. Tchienehom. Modèle générique de profils pour

la personnalisation de l'accès à l'information, 23ième

Congrès National Inforsid'04, p. 269-284, 2005.

