Study of preference driven database query systems
Reference study

ILIOIU FLORIN

MASTER Informatique (Université de Rennes I) – February 2006

Coordinator: Daniel Rocacher (ENSSAT - LANNION)
 Ludovic Liétard (IUT - LANNION)

Contents
21. Introduction

32. Preference SQL

32.1 Notion of preference

32.2 Language Overview

52.3 Built-in Preference Types

72.4 Assembling Complex Preference

82.5 Comments about Preference SQL

103. RankSQL

103.1 Rank-Relational Algebra

113.1.1 Rank-Relations. Ranking Principle

113.1.2 Extended Operators

123.1.3 Algebraic Laws

133.2 RankSQL architecture

133.2.1 The RankSQL Execution Engine

143.2.2 The RankSQL Query Optimizer

143.3 Concluzions

144. Preference Queries

155. Preferences and fuzzy sets

155.1 SQLf language

155.1.1 Fuzzy sets

165.1.2 Extensions of relational algebra

175.1.3 Main features of SQLf

185.2 Methods for expressing conjunctive aggregation

195.3 Conclusions

216. Conclusion

22References

1. Introduction

This reference study was realized within the BADINS project developed by IRISA. The main interest of BADINS project is the taking into account of preferences in queries addressed to usual relational databases.
Preferences are often expressed in the sense of wishes: wishes are free, but there is no guarantee that they can be fully satisfied at all times. In case of failure for the perfect match people are often prepared to accept worse alternatives or to negotiate compromises.
In database querying, the expression of preferences is welcomed to provide the user with a most suitable set of answers. Current database query systems are very rigid treating preferences as boolean conditions. As a consequence, very often, the user receives an empty answer. The simplest approach to remedy this unpleasant situation is “query weakening”. This means that the system advice the user to change his original query by omitting some conditions. Another approach is called parametric search. This process requires the user’s attention since he will be guided through the search process. At each step he will verify if the result has become empty in which case he has to backtrack and retry the search along a different search path. The entire process can be very time-consuming. A last approach is to define a specific query language to express user’s preferences.
A study of several such systems has been made by Olivier Pivert in his these [8] in 1991. The systems considered by him can be grouped in three categories. The first category regroups systems using a secondary criterion for expressing the preference. Such systems are PREFERENCES [9] and DEDUCE2 [10] in which a query is composed by a boolean condition C and a secondary part P expressing the preference. In the second category we find systems like ARES [11] and VAGUE [12] introducing the notion of distance defined on the domain of an attribute. The third approach is to associate to boolean conditions linguistic terms denoting the preference. It is the case of MULTOS [13] system in which we can find terms like “ideal”, “good” for expressing the preference, and “high”, “medium” for setting the importance of a criterion.
This study is placed in the same context of flexible interrogation and wants to extend and update the former work by analyzing several more recent systems. Three systems have been retained: PreferenceSQL [1], RankSQL [4] and Preference Queries [2]. A special attention was given to the first system, this one being a matter of study in the national project APMD (Personalized Access to Massive Data) in which BADINS team is involved. This work aims at showing how the notion of preference can be integrated in different query languages and to understand better their expressing power compared to the SQLf language developed by team BADINS.
The study is organized as follows. The first three chapters are dedicated to three non fuzzy approaches to define preferences in queries. Chapter 2 presents PreferenceSQL, a system which is based on strict partial order. Chapter 3 is an overview of RankSQL and in chapter 4 the Preference Queries is analyzed. The approach based on fuzzy sets is represented in chapter 5 by SQLf[8]. Some concluding remarks in chapter 6 ends the study.
2. Preference SQL

PreferenceSQL is a part of the program “It’s a Preference World“ developed by the University of Augsburg. It compatibly extends SQL adding support for expressing preferences in the queries addressed to relational databases.

In the first section of this chapter we will present the semantics behind the notion of preference in Preference SQL. Section 2.2 presents the difference between this system and Standard SQL insisting on the query block structure. The “Best Matches Only” strategy used by the system when querying a database is also pointed out. Section 2.3 is a brief presentation of the “built-in types” for expressing preferences and section 2.4 shows how complex preferences can be expressed in PreferenceSQL. We end this chapter with some concluding remarks formulated in section 2.5.
2.1 Notion of preference

Preference SQL [1] is based on the idea that people express their wishes frequently in terms of “I like A better than B“. The comparison ‘better than’ can be qualitative or quantitative. This system considers the qualitative approach. So a preference is seen as a strict partial order on the domain of values associated with an attribute set. Intuitively, this means a preference is a binary relation (noted <p) between tuples from the same (database) relation with the following properties:

- irreflexivity: (x. x not(<p) x

- asymmetry: (x,y. x <p y (y not(<p) x
- transitivity: (x,y,z. (x <p y (y <p z)(x <p z
We say a tuple x “is better than” a tuple y in sense of preference “p” if x <p y. Preferences may be complex, covering multiple attributes, in which case there is the possibility that several items be incomparable.
2.2 Language Overview

The model compatibly extends standard SQL by introducing new language constructs for expressing preferences.

 Preference SQL = Standard SQL + Preferences (as strict partial orders)
Preference SQL query block offers the following options, allowing for hard and soft selections to coexist within one single query:

SELECT <selection>

FROM <table_references>

WHERE <where-conditions>

PREFERRING <soft-conditions>
GROUPING <attribute_list>
BUT ONLY <but_only_condition>
ORDER BY <attribute_list>

The elements that extend standard SQL appear in bold. The PREFERING clause is introduced to regroup the soft conditions (preferences). The GROUPING is the equivalent of GROUP BY. A certain quality threshold can be enforced using the clause BUT ONLY. In order to justify the results Preference SQL supports special quality functions, reporting to which extent a soft criteria is met by a result tuple:

· TOP(A) is a Boolean predicate reporting whether attribute value A is a perfect match or not.

· LEVEL(A) reports how far the A-value of a tuple is apart from the maximal A-value (being at level 1).
· DISTANCE(A) reports how far the numerical A-value of a tuple is apart from the maximal A-value (being at distance 0).

These functions can also be used in the BUT ONLY clause.

Example 2.1: Assume somebody is looking for a travel that starts around the 3rd of July and takes around two weeks. But he or she is not willing to accept variations above two days for each criterion.
SELECT * FROM trips PREFERRING start_day AROUND '1999/7/3' AND duration AROUND 14

 BUT ONLY DISTANCE(start_day)<=2 AND DISTANCE(duration)<=2; (
The answer semantics of Preference SQL follows a ‘Best Matches Only’ (BMO) query strategy:

• Find all perfect matches wrt. preference P in the PREFERRING clause. If this set is non-empty, we are done.

• Otherwise, consider all other values within the BUT ONLY quality threshold, but discard worse values wrt. Preference P on the fly. All non-dominated values are returned.
The abstract algorithm presented in [1] is as follows:

1. At the start the set of maximal tuples Max is empty.
2. Select a tuple t1 from the R.

3. Insert t1 into Max if there is no tuple t2 in R that is better than t1 wrt. P.

4. Repeat steps (2) through (3) until all tuples t1 from R have been selected.

5. The method is finished. Max contains the maximal tuples from R wrt. P.
Example 2.2: Consider the following PreferenceSQL query:
SELECT * FROM Cars PREFERRING Make = 'Audi' AND Diesel = 'yes';
addressed to the car relation:

	Id
	Make
	Model
	Price
	Mileage
	Airbag
	Diesel
	Level(Make)
	Level(Diesel)

	1
	Audi
	A6
	40000
	15000
	yes
	no
	1
	2

	2
	Bmw
	5 series
	35000
	30000
	yes
	yes
	2
	1

	3
	VW
	Beetle
	20000
	10000
	yes
	no
	2
	2

At first, it is created a new view for this relation by calculating the LEVEL for each attribute in the PREFERING clause for every tuple in the relation. As there is no perfect match each tuple in the relation R is compared with the other tuples to see if exists another one which dominates the selected one. If there is none, the tuple is considered dominant and it will be present in the answer, and the process continues until all tuples from the relation have been selected. In this case, each tuple is the best in her class and they are considered incomparable.

In the example above, the answer is:
	1
	Audi
	A6
	40000
	15000
	yes
	no
	1
	2

	2
	Bmw
	5 series
	35000
	30000
	yes
	yes
	2
	1

 (

2.3 Built-in Preference Types

PreferenceSQL provides several built-in base preference types, which in fact can be seen as atomic conditions and can be used as single conditions or can be part of complex preference expression.
• Approximation: AROUND, BETWEEN
The ‘AROUND’ preferences favor values close to a numerical target value. This is useful when hitting the target value is not a must or hardly possible.

Example 2.3:
SELECT * FROM trips PREFERRING duration AROUND 14;
This query returns trips taking 14 days if possible, else those with the closest duration to 14 (
The ‘BETWEEN[low, up]’ preference type behaves analogously: Values inside [low, up] are best, otherwise being closer to the interval limits is considered better.

• Minimization/Maximization: LOWEST, HIGHEST

A frequently occurring preference is asking for highest or lowest values.
Example 2.4:
SELECT * FROM apartments PREFERRING HIGHEST(area);
The preference query asks for the largest apartment available. Instead of a single attribute (like area), an arithmetic expression over several attributes or even a proper stored function are admissible, too. (
• Favorites, dislikes: POS, NEG
POS and NEG are base preference constructors used on categorical attributes. A POS preference expresses a soft condition that a desired value should be one out of a given list of values. An POS example is the IN operator used in conjunction with the clause PREFERRING. This construction is the equivalent of a real preference like ”should be” which is a soft condition and differs from the hard condition “must be”. Various combinations of POS and NEG preferences (e.g. POS/POS, POS/NEG) are supported.
Example 2.5:
Let’s consider the following two examples:
1. A POS preference: SELECT * FROM programmers PREFERRING exp IN (‘java’, ‘C++’)

 AND age AROUND 25;
2. A POS/POS preference: SELECT * FROM programmers PREFERRING exp = 'java' ELSE exp = 'C++'

 AND age AROUND 25
The first query looks for a programmer who should be around 25 years old and should have Java or C++ experience. If such an applicant does not exist, programmers with other skills or other ages will be considered alternatively.

The second query looks for a programmer who should be around 25 years old and should have Java experience and if not, C++ experience is preferred. If such an applicant does not exist, programmers with other skills or other ages will be considered alternatively.

Consider the programmers relation:

	
	Query 1 POS & AROUND
	Query 2 POS/POS & AROUND

	name
	age
	exp
	Distance(age)
	Level(exp)
	Distance(age)
	Level(exp)

	John
	26
	java
	1
	1
	1
	1

	Jack
	25
	php
	0
	2
	0
	3

	Andy
	26
	C++
	1
	1
	1
	2

If we pose these two queries against the programmers relation the results are as follows:
1. In the first case we get:

	John
	26
	java

	Jack
	25
	php

	Andy
	26
	C++

The presence of John and Andy in the result is motivated by the fact that no one is better then the other, both of them having the same age and the same level associated with their experience.
2. In the second case we get:
	John
	26
	java

	Jack
	25
	php

 (
Similar to the POS constructor, a NEG preference expresses a soft condition that a desired value should not be one of a given list of values. A NEG example is the <> operator used in conjunction with the clause PREFERRING. This construction is the equivalent of a real preference like ”should not be” which is a soft condition and differs from the hard condition “must not be”.
Example 2.6:
SELECT * FROM programmers PREFERRING exp <> ‘php’;
This query expresses a preference for a programmer with other programming experience than php. If only programmers with php experience are available, offering one of those is better than offering nothing. If this query is posed against the same programmers relation the result is:

	John
	26
	java

	Andy
	26
	C++

 (
2.4 Assembling Complex Preference

In general decisions are not based on a single preference, but on a possibly complex combination of preferences. Preference SQL offers means to assemble complex preferences but it is limited to two cases: conjunctions where atomic conditions are of equal importance and conjunctions where atomic conditions have different importance.
• Equal importance: Pareto accumulation (AND)
Pareto accumulation of preferences P1, …, Pn into a complex preference P is defined as:

v = (v1, …, vn) is better than w = (w1, …, wn) iff

(i such that vi is better than wi and v is equal or better than w in any other component value

In this definition, v and w are two vectors corresponding to two tuples/items in the database. Each vector contains n values related to the n equal important atomic conditions P1, …, Pn in the following manner: if Pi expresses a preference concerning the attribute ‘atti’ then
 LEVEL(atti) if atti is a non numeric attribute
 vi=
 DISTANCE(atti) if atti is a numeric attribute
Example 2.7: As an example we use the same query as in example 2.2 section 2.2:

 SELECT * FROM Cars PREFERRING Make = 'Audi' AND Diesel = 'yes' ,
addressed to the car relation:

	Id
	Make
	Model
	Price
	Mileage
	Airbag
	Diesel
	Level(Make)
	Level(Diesel)

	1
	Audi
	A6
	40000
	15000
	yes
	no
	1
	2

	2
	Bmw
	5 series
	35000
	30000
	yes
	yes
	2
	1

	3
	VW
	Beetle
	20000
	10000
	yes
	no
	2
	2

	4
	Audi
	A4
	11000
	120000
	no
	no
	1
	2

The non dominated tuples returned according to pareto accumulation are:

	1
	Audi
	A6
	40000
	15000
	Yes
	no
	1
	2

	2
	Bmw
	5 series
	35000
	30000
	Yes
	yes
	2
	1

	4
	Audi
	A4
	11000
	120000
	no
	no
	1
	2

 (
• Ordered importance: Cascading of preferences (CASCADE)
Cascading of preferences assigns different levels of importance to the constituent preferences, applying preferences one after the other. Preference SQL’s syntax for ordered importance is ‘CASCADE’.
Example 2.8:
Using the following query: SELECT * FROM Cars PREFERRING Make = 'Audi'
 CASCADE Diesel = 'yes'
against the relation car will produce the following answer:

	1
	Audi
	A6
	40000
	15000
	yes
	no
	1
	2

	4
	Audi
	A4
	11000
	120000
	no
	no
	1
	2

In this example we can see the difference between AND and CASCADE. The last operator applies the first preference criteria and if the result is a single tuple the next preference criteria is ignored and the search stops returning this tuple. If there are more than one tuples satisfying the Make=’Audi’ criteria, the second preference criteria is used in order to narrow down the result. In this case the second criteria has no influence over the result because both cars satisfy the criteria in the same extent. (

2.5 Comments about Preference SQL

In this section we present two examples which show a contra-intuitive behavior of PreferenceSQL:

1. When expressing complex preferences, Preference SQL uses Pareto accumulation for expressing equally important preferences. Due to this fact the user who searches for an answer in a database can be overloaded with irrelevant information.
Example 2.9:
The following preference query asks for cars aged around 4 years, with a mileage around 20000 Km, a horsepower around 90 HP and a price around 15000 euros. The constraints are equally important:
SELECT * FROM cars PREFERRING age AROUND 4 AND mileage AROUND 20000 AND
 horsepower AROUND 90 AND price AROUND 15000
Consider this car database:
	make
	age
	mileage
	price
	hp
	Dist(age)
	Dist(mileage)
	Dist(price)
	Dist(hp)

	ferrari
	40
	400000
	100000
	90
	36
	380000
	85000
	0

	audi
	4
	20000
	15000
	91
	0
	0
	0
	1

	peugeot
	5
	20001
	15001
	91
	1
	1
	1
	1

Despite the fact that “audi” is clearly better then “ferrari” the Pareto-optimal result is as follows:
	ferrari
	40
	400000
	100000
	90
	36
	380000
	85000
	0

	audi
	4
	20000
	15000
	91
	0
	0
	0
	1

The presence of “Ferrari” in the answer is motivated by the fact that this tuple fully satisfies the criteria <hp> and can not be dominated by any others (since they do not fully satisfy criteria hp). The decision about “Ferrari” is based on a unique attribute even if the others strongly violate their constraints. Also Preference SQL doesn’t make a hierarchy of the tuples within the answer, considering that both tuples satisfy the criteria in the same extent, even if “audi” is a perfect-match for 3 constraints and it is very closed to being a perfect-match when considering the 4th constraint. (

2. When assembling complex preferences with different levels of importance, the present model applies preferences one after the other resulting in a very rigid treatment of preferences with no possible compensation between them.

Example 2.10: Suppose someone wants to buy a car, where its mileage should be around 20000 km, which in turn is less important than the age being around 4 years. This wish can be expressed as:
SELECT * FROM cars PREFERRING age AROUND 4 CASCADE mileage AROUND 20000
Consider this car database:

	make
	age
	mileage
	Dist(age)
	Dist(mileage)

	audi
	35
	20000
	31
	0

	bmw
	34
	400000
	30
	380000

The result for the query presented above is:

	bmw
	34
	400000
	30
	380000

In this case the decision is made on an attribute which very strongly violates its constraint. So even if both tuples are very far from satisfying the user’s wish concerning the age constraint and the difference between the ages of each car is barely observable reported to the distance to “a perfect-match”, the system still does not consider the next criteria in the CASCADE sequence. In other words, PreferenceSQL does not consider a limit in which a constraint can be violated before the system begins to verify the other constraints. In the example presented above, if we consider the age criteria, both cars are NOT what the user wishes, but when considering the mileage criteria, “audi” is a “perfect-match”, still the system offers “bmw” as the best answer. (

Due to the fact that PreferenceSQL is using two different concepts for evaluating the degree in which a tuple satisfies an atomic condition (level and distance), it is not possible to implement a compensation strategy between different atomic conditions. One reason for this restriction could be the performance criteria. This is motivated by the extra mathematical operations (multiplication, division) that must be performed in order to normalize all satisfaction degrees.
3. RankSQL

The idea of ranking queries is to provide only the top k query results according to a user-specified ranking function, which in many cases is an aggregate of multiple criteria.
Example 3.1: Top-k query example:

	SELECT * FROM r1, r2, r3 WHERE c1 AND c2 AND c3
	BY p1+p2+p3 LIMIT k

	phase (1)
	phase (2) (3) (4)

where r1, r2, r3 are input relations; c1, c2, c3 are boolean conditions (simple conditions over one or multiple attributes, or join conditions) and p1, p2, p3 are raking predicates expressing user’s preferences as numerical scores(usually between 0 and 1). (
Curent RDBMSs can only execute such queries in the following way: (1) exhaust the input relations and materialize the whole results according to the conditions specified, (2) evaluate all the predicates for all the materialized results, (3) sort all the results by p1+p2+p3 (the user can define any function to combine the ranking predicates), (4) report the top k results. The problems highlighted in this paragraph are that since the user is only interested in the top k results, the full materialization is an unnecessary and time consuming process. For the same reasons, the evaluation of all the predicates should be done only for a part of the materialized results, which is related to the number k of desired results. This problems appear because there is a significant gap between the support offered for filtering and ranking by the current RDBMSs. While there is support for splitting and interleaving for filtering operations, the ranking operator is “monolithic”. The scoring function is evaluated at it’s entirety after the rest of the query is materialized and cannot be split and interleaved with filtering operations.
Based on this idea, RankSQL aims at providing a seamless support and integration of top-k queries with the existing SQL query facility by defining top-k queries as a first class query type.
The rest of this chapter is organized as follows. In section 3.1 is presented the theoretical foundation on which RankSQL is based. The incremental execution model is presented in section 3.2 and a rank-aware query optimizer is described in section 3.3. The conclusions regarding this system are formulated in section 3.4.
3.1 Rank-Relational Algebra

In order to handle ranking as a first class operation, relational data model must be extended. The new rank-relational model is presented in section 3.1. An extension of relational algebra for manipulating this new concept is defined (section 3.1.2) and new algebraic laws for equivalence transformations must be defined to lay the foundation of query optimization (section 3.1.3).
3.1.1 Rank-Relations. Ranking Principle

The extended relational data model must capture inside the notion of ranking. Therefore some new concepts are introduced:

Definition 1 (maximal-possible score): With respect to a scoring function F(p1,…,pn), and a set of evaluated predicates P = {p1,…,pj}, the maximal-possible score (or upper bound) of a tuple t, denoted
[image: image1.wmf][

]

t

F

P

 is defined as

[image: image2.wmf](

)

[

]

[

]

÷

÷

ø

ö

ç

ç

è

æ

"

=

Î

=

=

i

otherwise

p

P

p

if

t

p

p

F

t

F

i

i

i

i

p

p

P

n

1

,...,

1

(
Property 1(Ranking Principle): Given two tuples t1 and t2, if
[image: image3.wmf][

]

[

]

2

1

t

F

t

F

P

P

>

, then t1 must be further processed if we necessarily further process t2 for query answering. (
Definition 2 (Rank-Relation): A rank-relation RP, with respect to relation R and monotonic scoring function F(p1,…,pn), for P ({p1,…,pn}, is the relation R augmented with the following ranking induced by P.
· (Scores) The score for a tuple t is the maximal-possible score of t under F, when the predicates in P have been evaluated, i.e.
[image: image4.wmf][

]

t

F

P

. It is an implicit attribute of the rank-relation.

· (Order) An order relationship <RP is defined over the tuples in RP by ranking their scores, i.e.
[image: image5.wmf][

]

[

]

2

1

2

1

2

1

:

,

t

F

t

F

iff

t

t

R

t

t

P

P

R

P

P

<

<

Î

"

. (

Example 3.2: Considering the relation R:

	TID
	a
	b
	p1
	p2

	r1
	1
	2
	0.9
	0.65

	r2
	3
	4
	0.7
	0.7

	r3
	5
	1
	0.75
	0.6

the rank-relation with respect to relation R and SUM(p1, p2) as a ranking function, after evaluating only predicate p2, is:
	TID
	a
	b
	
[image: image6.wmf]{

}

2

p

F

	r2
	3
	4
	1.7

	r1
	1
	2
	1.65

	r3
	5
	1
	1.6

3.1.2 Extended Operators

A rank-relation RP possesses two logical properties: membership as defined by the relation R and order induced by predicates P (with respect to a scoring function F). For manipulating these two properties, existing relational operators have been extended to be rank-aware. A new operator was introduced in order to be able to evaluate the ranking predicates one by one. This new operator (p(RP) evaluates an additional predicate p upon rank-relation RP, ordered by evaluated predicate set P and produces a new order by P({p} ((p(RP) = RP({p}).
	Rank:(, with a ranking predicate p
·
[image: image7.wmf](

)

P

P

p

R

t

iff

R

t

Î

Î

m

·
[image: image8.wmf][

]

[

]

2

{p}

1

{p}

2

1

t

F

t

F

iff

t

t

P

P

p

È

È

<

<

m

Selection: (, with a boolean condition c
·
[image: image9.wmf](

)

c

satisfies

t

and

R

t

iff

R

t

P

P

c

Î

Î

s

·
[image: image10.wmf][

]

[

]

2

1

,

2

1

2

1

.

.

t

F

t

F

e

i

t

t

iff

t

t

P

P

R

P

c

<

<

<

s

	Union: (
·
[image: image11.wmf]2

1

2

1

P

P

P

P

S

t

or

R

t

iff

S

R

t

Î

Î

È

Î

·
[image: image12.wmf][

]

[

]

2

1

2

1

2

1

2

1

t

F

t

F

iff

t

t

P

P

P

P

È

È

È

<

<

	Intersection: (
·
[image: image13.wmf]2

1

2

1

P

P

P

P

S

t

and

R

t

iff

S

R

t

Î

Î

Ç

Î

·
[image: image14.wmf][

]

[

]

2

1

2

1

2

1

2

1

t

F

t

F

iff

t

t

P

P

P

P

È

È

Ç

<

<

	Difference: -
·
[image: image15.wmf]2

1

2

1

P

P

P

P

S

t

and

R

t

iff

S

R

t

Ï

Î

-

Î

·
[image: image16.wmf][

]

[

]

2

1

2

1

2

1

1

1

1

.

.

,

t

F

t

F

e

i

t

t

iff

t

t

P

P

R

P

<

<

<

-

	Join: (, with a join condition c
·
[image: image17.wmf]c

satisfies

and

S

R

t

iff

S

R

t

P

P

P

c

P

2

1

2

1

´

Î

´

Î

·
[image: image18.wmf][

]

[

]

2

1

2

1

2

1

2

1

t

F

t

F

iff

t

t

P

P

P

P

c

È

È

´

<

<

Table 3.1 Operators defined in the extended algebra
3.1.3 Algebraic Laws

Algebraic equivalences are the key ingredients in the process of optimization. Based on these laws, optimizers can split and interleave operators in order to achieve better performances.

	Proposition 1: Splitting law for (
· R{p1,p2,…,pn} ((p1((p2(…((pn(R))…))

	Proposition 2: Commutative law for binary operator

·
[image: image19.wmf]{

}

c

P

P

P

P

R

S

S

R

´

È

Ç

Î

Q

"

Q

º

Q

,

,

,

1

2

2

1

	Proposition 3: Associative law

·
[image: image20.wmf]{

}

a

c

P

P

P

P

P

P

T

S

R

T

S

R

´

È

Ç

Î

Q

"

Q

Q

º

Q

Q

,

,

),

(

)

(

3

2

1

3

2

1

	Proposition 4: Commutative law for (
·
[image: image21.wmf]))

(

(

))

(

(

1

2

2

1

P

p

p

P

p

p

R

R

m

m

m

m

º

·
[image: image22.wmf]))

(

(

))

(

(

P

c

p

P

p

c

R

R

s

m

m

s

º

	Proposition 5: Pushing (over binary operators
·
[image: image23.wmf]p

in

att

has

R

only

if

S

R

S

R

P

c

P

p

P

c

P

p

,

)

(

)

(

2

1

2

1

´

º

´

m

m

[image: image24.wmf]have

S

and

R

both

if

S

R

P

p

c

P

p

),

(

)

(

2

1

m

m

´

º

·
[image: image25.wmf]2

1

2

1

2

1

)

(

)

(

)

(

)

(

P

P

p

P

p

P

p

P

P

p

S

R

S

R

S

R

È

º

È

º

È

m

m

m

m

·
[image: image26.wmf]2

1

2

1

2

1

)

(

)

(

)

(

)

(

P

P

p

P

p

P

p

P

P

p

S

R

S

R

S

R

Ç

º

Ç

º

Ç

m

m

m

m

·
[image: image27.wmf])

(

)

(

)

(

)

(

2

1

2

1

2

1

P

p

P

p

P

P

p

P

P

p

S

R

S

R

S

R

m

m

m

m

-

º

-

º

-

	Proposition 6: Multiple-scan of (
·
[image: image28.wmf])

(

)

(

))

(

(

2

1

2

1

Æ

Æ

Æ

Ç

º

R

R

R

p

r

p

p

p

m

m

m

m

 a when join columns are available

Table 3.2 Some algebraic equivalence laws
3.2 RankSQL architecture

The architecture of RankSQL is presented in Figure 3.1. The query engine can be divided into two main functional entities: the execution engine, further detailed in sub-section 3.2.1 and the query optimizer (section 3.2.2).
Figure 3.1: RankSQL architecture
3.2.1 The RankSQL Execution Engine

The RankSQL execution engine extends the common execution engine with two proprieties: (1) operators incrementally output rank-relations (tuple streams pass through operators in the order of maximal-possible scores according to our ranking principle); (2) the execution stops when k results are reported or no more results are available. According to these new properties, an operator can be viewed as an entity which consumes tuples from its preceding operator and outputs tuples ordered by the maximal-possible score at that moment. Therefore, before outputting a tuple, a rank-aware operator must be sure that this tuple has the biggest maximal-possible score according to the current set of evaluated predicates. In order to solve this problem, some operators (i.e. (p) buffer the tuples in a ranking queue usually implemented as priority queue, and output a tuple only when they have enough information to be sure that the ranking order is preserved. The strategy used in such decision problems vary from one operator to another. As an example we can consider the (p operator upon the input RP. The operator cannot output a drawn tuple t immediately after evaluating p[t] and calculating
[image: image29.wmf][

]

t

F

P

{p}

È

because one of the next tuples, t’, could obtain a bigger score after evaluating predicate p. In this case the operator decides that tuple t can be outputted when he draws from the preceding operator a tuple t’ so that
[image: image30.wmf][

]

'

t

F

P

(
[image: image31.wmf][

]

t

F

P

{p}

È

 (
[image: image32.wmf][

]

'

{p}

t

F

P

È

(
[image: image33.wmf][

]

'

t

F

P

 according to Def. 1 (
[image: image34.wmf][

]

'

{p}

t

F

P

È

(
[image: image35.wmf][

]

t

F

P

{p}

È

).
3.2.2 The RankSQL Query Optimizer

The new rank-relation algebra and the algebraic laws assure the existence of multiple equivalent plans for a given query. It is the burden of the query optimizer to generate all these possible plans and more than this, to find the best one. The structure of RankSQL query optimizer reflects these two challenges. Two functional entities can be distinguished: Plan Enumerator and Cost Estimator Using Sampling.
The Plan Enumerator generates all the possible plans with respect to a given set of relations SR and a set of ranking predicates SP. To achieve this, RankSQL is using a 2-dimension enumeration algorithm with heuristics to reduce the search space. An eficient heuristic is used to select the best (pu operator for a certain plan plan. A (pu operator is considered better than a (pv operator if rank((pu) > rank((pv) where
[image: image36.wmf])

(

cos

)

(

/

)

'

(

1

)

(

p

p

t

plan

card

plan

card

rank

m

m

-

=

, plan’ is the resulting plan after applying one (upon plan, cost((p) represents the cost for evaluating the predicate p. The system achieves better performances by evaluating first the less expensive predicates and which produce a future plan with a smaller cardinality.
Cost Estimator Using Sampling. In ranking query plans, an operator consumes only partial quantity of its inputs. This quantity is influenced by the number k of desired results and by the position of the corresponding sub-plan in the complete plan. But this propagation of k value to a specific sub-plan is unknown. In order to estimate this value, RankSQL uses a sampling-based cardinality estimation method.
3.3 Concluzions

RankSQL offers full support of ranking as first-class operation, allowing ranking operations to be split and interleaved with other operations. It promotes the idea that optimizations can be achieved at any stage of the querying process. While techniques like splitting and interleaving are used in optimization faze next to cost and cardinality estimation methods, a significant gain in performance is obtained by the pipelined incremental execution model. Another positive remark for this system is that the preferences are viewed as numerical predicates and the aggregation function can be any predefined function. A future work could be to capture the preferences not only for ranking reasons but also in the filtering conditions, because in this form the system is not very user friendly suffering from the “empty result” syndrome.
4. Preference Queries

5. Preferences and fuzzy sets
One of the objectives of research in the field of the databases is to make information management systems more flexible. The idea is to facilitate the access to relevant information by considering the user’s preferences. These preferences can be defined as “vague predicates” modeled by fuzzy sets of more or less satisfactory values.
This chapter has two objectives. The first is to make a short presentation of SQLf, a flexible query language based on fuzzy sets (section 5.1). The second is to analyze two methods for expressing conjunctive aggregation and to show the relation with the standard operators (pareto order etc.) used by the systems presented in precedent chapters (section 5.2).

5.1 SQLf language

This section, dedicated to the presentation of SQLf language, was divided into three sub-sections. The first two sub-sections contain elements from the theoretical background on which SQLf is founded. Section 5.1.1 presents the concept of fuzzy set and some key notions associated with this concept. In section 5.1.2 we can see an extension of relational algebra which can be applied on fuzzy relations. The third sub-section (5.1.3) is a brief presentation of SQLf aiming at showing its power of expression from preference concept point of view.
5.1.1 Fuzzy sets

In classical set theory, the membership of elements in a set is assessed in binary terms according to a crisp condition - an element either belongs or does not belong to the set. By contrast, fuzzy set theory permits the gradual assessment of the membership of elements in relation to a set; this is described with the aid of a membership function (E:X ([0,1] which expresses the degree of belonging of element x in the fuzzy set E (A classical set can be viewed as a particular case of a fuzzy set who’s membership function is described by fA:X ({0,1}).

Generally a fuzzy set E is noted: E={(x, (E(x)) | x (X}, but if x is a discrete variable we can use the notation: E={(1 /x1+(2 /x2+…+(n /xn} where: (E:{x1,…,xn} ([0,1] and (E(xi) = (i .

Fuzzy sets are used to model linguistic terms
 in particular adjectives. For example the concept “young” can be modeled by the fuzzy set presented in this picture:

[image: image37]
Figure 1. The fuzzy set “young”

The classic set operations for combining sets (union, intersection) are extended in the context of fuzzy sets using fuzzy logic operators (triangular norms and conorms). These operations extend the logic operations and/or on the interval [0,1]. There are more couples norm/conorm, but the most common used is the couple min/max. All classic operations have an equivalent in fuzzy set theory (intersection, union, difference, cartesian product).
5.1.2 Extensions of relational algebra

In the context of flexible querying, the relational algebra is extended to fuzzy relations. A fuzzy relation r [3] is an ordinary relation in which for each tuple t we associate a number within [0,1] interval, indicating the extent in which the tuple t belongs to the fuzzy set represented by the relation r.
Exemple 5.1:
Considering the relation emp:

 emp
	no
	name
	age
	salary
	dept

	17
	John
	25
	2500
	Paris

	76
	Jack
	38
	3500
	Lyon

	26
	Andy
	29
	3000
	Paris

the fuzzy relation corresponding to the “young” employees according to the fuzzy predicate “young” presented in Figure 1. is:

 emp-y
	no
	name
	age
	salary
	dept
	degree

	17
	John
	25
	2500
	Paris
	1

	76
	Jack
	38
	3500
	Lyon
	0

	26
	Andy
	29
	3000
	Paris
	0.3

 (

Considering the fuzzy relations: r defined on the attribute set X and s defined on the attribute set Y the principal operators can be defined as follows:

· union: (r(s(x) = max((r(x), (s(x));
· intersection: (r(s(x) = min((r(x), (s(x));
· difference: (r-s(x) = (r(ŝ(x) = min((r(x), 1-(s(x));

· cartesian product: (rxs(xy) = min((r(x), (s(y));

· selection: (select(r,p)(x) = min((r(x), (p(x)) where p is a fuzzy predicate;

· projection: (project(r,V)(v) = maxw((r(vw)) where V is a subset of X, v(V, w(X-V;
· join: (join(r,s,Ө,A,B)(x) = min((r(x), (s(y), (Ө(x.A,y.B)) where Ө is a gradual comparator and A (resp. B) are attributes of r (resp. s).
Other definitions for the above operations can be obtained if we change the couple (min, max) with another couple (norm, conorm).
5.1.3 Main features of SQLf

The language called SQLf, described in [8], is an extension of SQL allowing the definition of flexible queries based on fuzzy set theory. This section presents some key elements concerning this language.

The structure in three clauses select, from and where of the SQL base block is maintained in SQLf also. The clause from suffers no changes. The differences respect two main directions:

i) the nature of the conditions allowed in the where clause (which can be defined by fuzzy predicates),

ii) the answer calibration, which can be translated into a number of desired results (n) and/or a quality threshold (t).
As a consequence, the form of the SQLf query block is:

select [n | t | n,t] attributes from relations where fuzzy_conditions

 This expression can be interpreted as a fuzzy restriction of the cartesian product between the relations involved, followed by a projection over the attributes within the select clause and a calibration of the answer (the best ‘n’ elements and/or the ones who’s satisfaction degree is greater than the quality threshold ‘t’).
Example 5.2: Consider the relations emp(emp#, e-name, salary, qualification, age, city, dep#), dep(dep#, d-name, budget, place) and the fuzzy predicate “young” and “big budget”.

[image: image38]
 emp
	emp#
	e-name
	salary
	qualification
	age
	city
	dep#

	17
	Dupont
	3500
	Engineer
	51(0)
	Lyon
	3

	76
	Martin
	3000
	Engineer
	40(0.25)
	Paris
	5

	26
	Durant
	2000
	Secretary
	24(1)
	Lyon
	3

	12
	Dubois
	2500
	Technician
	39(0.3)
	Lyon
	3

	55
	Lorant
	3500
	Accountant
	30(0.75)
	Lyon
	1

 dep

	dep#
	d-name
	budget
	place

	1
	Network
	5000(1)
	Lyon

	3
	Components
	1500(0.65)
	Lyon

	5
	Financial
	400(0.1)
	Paris

The following query in natural language: “find the employees satisfying the condition <being young and working in a ‘big budget’ department> in an extent grater than 0.6” is expressed in SQLf by:

select 0.6 emp#, e-name from emp E, dep D

where E.dep#=D.dep# and E.age=”young” and D.budget=”big”
If we address this query to the relations emp and dep the answer is:
	emp#
	e-name
	degree

	26
	Durant
	0.65

	55
	Lorant
	0.75

because only this two tuples satisfy the fuzzy conditions in an extent greater than 0.6. (
In this example the fuzzy condition is composed by two fuzzy predicates combined with the operator and. SQLf accepts complex selection criteria in which the operator used for combining the fuzzy predicates can be any predefined fuzzy quantifier.
Example 5.3: Let’s consider the relations emp and dep and the following question:

“find the best 5 employees satisfying the majority of the following conditions: living in Rennes, having a good salary, being young and working in a big budget department” . The corresponding SQLf query can be as follows:

select 5 emp#,e-name

from emp E,dep D

where E.dep#=D.dep# and

the_majority(E.city=”Rennes”,E.salary=”good”,E.age=”young”,D.budget=”big”)
where the_majority is a fuzzy quantifier. (

The use of sub-queries in the where clause is also permitted. The sub-queries are introduced by the following operators: in (membership), exists (existence), Ө any, Ө all (the comparison with one or all the returned values). These operators have been extended for the case when a sub-query returns a fuzzy relation. Another possible extension can be considered where the operators themselves can be considered gradual. For example the inf operator can test in which extent a given value resembles with one contained in the fuzzy set returned by a sub-query.

Finally, SQLf allows the regrouping of tuples using the group by clause. A fuzzy condition for the members of the group can be expressed using the having clause. There are three types of fuzzy conditions accepted:

- applying a criterion to the result of an aggregation,

- use of quantified propositions,
- comparison between fuzzy sets.
5.2 Methods for expressing conjunctive aggregation

In the context of multiple criteria decision, conjunctive aggregation plays a very important role. It is used to combine constraints with the same level of importance. In this section we will present several methods used to aggregate constraints insisting on discrimin and leximin [5, 7].

Let u=(u1,…,ui,…,un) and v=(v1,…,vi,…,vn) be two vectors having the same length n.
Pareto ordering.
Pareto ordering is defined in the following way:

Min ordering.

In case of min ordering the decision is based on the comparison of smallest values contained in the two vectors.

Discrimin.
The discrimin ordering between two vectors of equal length is equivalent to applying the min-ordering after equal components having the same position in the two vectors have been deleted.

If D(u,v)={i | ui(vi} is the set of indices for which the corresponding values in u and v are different, then :
Leximin.
Leximin is also based on the idea of deleting/ignoring identical elements when comparing the two vectors, but after the vectors have been reordered in ascending order.

If u* and v* are two permutations of u respectively v so that u1*(…(ui*(…(un* and v1*(…(vi*(…(vn*, then:

Example 5.4: Let us take an example: u=(0.2, 0.5, 0.3, 0.4, 0.8)

 v=(0.2, 0.3, 0.5, 0.6, 0.8)

	Pareto
	Min
	Discrimin
	Leximin

	u=(0.2, 0.5, 0.3, 0.4, 0.8)
v=(0.2, 0.3, 0.5, 0.6, 0.8)
(incomparable

	mini ui = 0.2
mini vi = 0.2

(u = min v
	u’=(0.5, 0.3, 0.4)
v’=(0.3, 0.5, 0.6)

mini ui’= 0.3

mini vi’= 0.3

(u’ = v’ (u = discrimin v
	u*=(0.2, 0.3, 0.4, 0.5, 0.8)
v*=(0.2, 0.3, 0.5, 0.6, 0.8)

(k=3 u3=0.4
 v3=0.5 (u3< v3
(u <leximin v

 (
5.3 Conclusions

It is clear that Discrimin, by eliminating first the equal values situated on same the position, can be considered a refinement of the min ordering because it can discriminate between two vectors in some cases in which min cannot. These are the cases when the minimal values for the two vectors have the same indices. As shown in example 5.4, leximin is a refinement of discrimin having an even greater discriminating power than this one. However, some remarks about min/leximin must be made.

If we consider a relation r over ‘n’ attributes and a complex condition P containing ‘m’ atomic conditions, each item in r can be considered as a vector containing ‘m’ values. Each value vi corresponds to the extent in which the item satisfies the atomic condition Pi (i(1..m).
Min can be seen as an aggregation function because we can compute a value depending on the ‘m’ components vi for each item ‘v’ in the relation. Then we can use this value to establish a hierarchy of the items. Leximin can be seen as a method for classifying items when considering the complex condition P. Given a certain item x in the relation it is possible to compute mini(1..m(vi). In order to use leximin we must specify a strategy for searching the best item, and use leximin to decide which is the best choice between two items. We can think of using leximin and discrimin in order to discriminate between tuples with the same satisfaction degree (corresponding to a “min” agregation).

Examle 5.5: Consider the relation emp(emp#, e-name, salary, qualification, age, city, and the fuzzy predicate “young” , “well paid” and “important department”. The satisfaction degrees for each fuzzy predicate are specified in brackets.
 emp “well paid” “young” “important dep.”
	emp#
	e-name
	salary
	qualification
	age
	city
	dep#

	17
	Dupont
	3500(1)
	Engineer
	25(1)
	Lyon
	3(1)

	76
	Martin
	3100(0.6)
	Engineer
	29(0.8)
	Paris
	5(0.9)

	26
	Durant
	3100(0.6)
	Secretary
	29(0.8)
	Lyon
	4(0.8)

	12
	Dubois
	3100(0.6)
	Technician
	27(0.9)
	Lyon
	5(0.9)

	55
	Lorant
	2900(0.4)
	Accountant
	35(0.5)
	Lyon
	4(0.8)

We are interested in finding the employees satisfying the condition: being “well paid” and being “young” and working in an “important dep.” If we use min to evaluate the global satisfaction degree, the scores obtained by each employee are: Dupont (1), Martin (0.6), Durant (0.6), Dubois (0.6), Lorant (0.4). The system could use leximin to discriminate between the three employees having the same satisfaction degree (0.6) and to conclude that Dubois is better than Martin which is better than Durant.

6. Conclusion
References

[1]
W. Kießling, G. Köstler: Preference SQL - Design, Implementation, Experiences. Proceedings of the 28th VLDB Conference, Hong Kong, China, 2002.
[2]
J. Chomicki: Preference Formulas in Relational Queries . ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003, Pages 1-40.
[3]
P. Bosc, L. Liétard, O. Pivert, D. Rocacher: Gradualité et imprécision dans les bases de données, edition Ellipses, 2004.

[4]
Chengkai Li, K. Chen-Chuan Chang, Ihab F. Ilyas, Sumin Song: RankSQL : Query Algebra and Optimization for Relational Top-K Queries. In SIGMOD 2005, pages 131-142, 2005.

[5]
D. Dubois, H. Fargier, H. Prade : Beyound min aggregation in multicriteria decision: (ordered) weighted Min, Discri-Min, Leximin. In The Ordered Weighted Averaging Operators -- Theory and Applications. R.R. Yager, J. Kacprzyk (Eds.), Kluwer Academic Publ., Boston, pages 181-192, 1997.
[6]
H. Prade: Refinement of Minimum-Based Oredering in between Discrimin and Leximin, ????

[7]
Ronald R. Yager, Carol L. Walker, Elbert A. Walker: Generalizing Leximin to T-norms and T-conorms: the LexiT and LexiS orderings. Fuzzy Sets and Systems 151, pages 327-340, 2005.
[8]
P. Bosc, O. Pivert: SQLf: A relational database language for fuzzy querying, IEEE Transactions on Fuzzy Systems, vol. 3, pages 1-17, 1995.
[9]
O. Pivert: Contribution a l’interogation flexible de bases de données: expression et evaluation de requetes floues, These soutenue le 6 decembre 1991.
[9]
M. Lacroix, P. Lavency: Preferences: putting more knowledge into quieries. Procedings 13rd VLDB Conference, Brighton, GB, 1987, pages 217-225
[10]
C. Chang: Decision support in an imperfect world, Research report RJ3421, IBM, San Jose, CA, USA, 1982.
[11]
T. Ichikawa, M. Hirakawa: ARES: a relational database with the capability of performing flexible interpretation of queries, IEEE Transactions on Software Engineering, vol. 2, pages 624-634, 1986.
[12]
A. Motro: VAGUE: a user interface to relational database that permits vague queries, ACM Transactions on Office Information Systems, vol. 6, pages 187-214, 1988.
[13]
F. Rabitti: Retrieval of multimedia documents by imprecise query specification, Lecture notes in computer science, vol. 416, pp 202-218, 1990.

 ‘young’

 1

 0 25 45 age

Figure 2. Fuzzy predicates ‘big budget’ and ‘young’

‘big budget’

‘young’

 0 200 2200 budget 0 25 45 age

1

1

u >discrimin v (mini(D(u,v) ui > mini(D(u,v) vi

u >leximin v (u* >discrimin v* ((k (n | (i<k ui* = vi* , uk* > vk*)

u >pareto v (((i ui (vi , (j uj > vj)

u >min v (mini ui > mini vi

=

<

<

>

=

query

Query Optimizer

execution plan

parsed query

Query Engine

Query Parser

Database Sampler

Cost Estimator

Plan Enumerator

Execution Engine

Plan Executor

PAGE
1

_1203205648.unknown

_1203209185.unknown

_1203211058.unknown

_1203211787.unknown

_1203221402.unknown

_1203222129.unknown

_1203225935.unknown

_1203221922.unknown

_1203221372.unknown

_1203211599.unknown

_1203211738.unknown

_1203211442.unknown

_1203210165.unknown

_1203210417.unknown

_1203210788.unknown

_1203209713.unknown

_1203207078.unknown

_1203207136.unknown

_1203207155.unknown

_1203207105.unknown

_1203206102.unknown

_1203206946.unknown

_1203206973.unknown

_1203206004.unknown

_1203199627.unknown

_1203204461.unknown

_1203205295.unknown

_1203202434.unknown

_1203199061.unknown

_1203199593.unknown

_1203196851.unknown

